Timezone: »

 
Poster
More data means less inference: A pseudo-max approach to structured learning
David Sontag · Ofer Meshi · Tommi Jaakkola · Amir Globerson

Wed Dec 08 12:00 AM -- 12:00 AM (PST) @

The problem of learning to predict structured labels is of key importance in many applications. However, for general graph structure both learning and inference in this setting are intractable. Here we show that it is possible to circumvent this difficulty when the input distribution is rich enough via a method similar in spirit to pseudo-likelihood. We show how our new method achieves consistency, and illustrate empirically that it indeed performs as well as exact methods when sufficiently large training sets are used.

Author Information

David Sontag (MIT)
Ofer Meshi (Google)
Tommi Jaakkola (MIT)

Tommi Jaakkola is a professor of Electrical Engineering and Computer Science at MIT. He received an M.Sc. degree in theoretical physics from Helsinki University of Technology, and Ph.D. from MIT in computational neuroscience. Following a Sloan postdoctoral fellowship in computational molecular biology, he joined the MIT faculty in 1998. His research interests include statistical inference, graphical models, and large scale modern estimation problems with predominantly incomplete data.

Amir Globerson (Tel Aviv University, Google)

Amir Globerson is senior lecturer at the School of Engineering and Computer Science at the Hebrew University. He received a PhD in computational neuroscience from the Hebrew University, and was a Rothschild postdoctoral fellow at MIT. He joined the Hebrew University in 2008. His research interests include graphical models and probabilistic inference, convex optimization, robust learning and natural language processing.

Related Events (a corresponding poster, oral, or spotlight)

More from the Same Authors