Timezone: »
Poster
Empirical Risk Minimization with Approximations of Probabilistic Grammars
Shay Cohen · Noah A Smith
Probabilistic grammars are generative statistical models that are useful for compositional and sequential structures. We present a framework, reminiscent of structural risk minimization, for empirical risk minimization of the parameters of a fixed probabilistic grammar using the log-loss. We derive sample complexity bounds in this framework that apply both to the supervised setting and the unsupervised setting.
Author Information
Shay Cohen (Columbia University)
Noah A Smith (Carnegie Mellon University)
More from the Same Authors
-
2014 Workshop: Representation and Learning Methods for Complex Outputs »
Richard Zemel · Dale Schuurmans · Kilian Q Weinberger · Yuhong Guo · Jia Deng · Francesco Dinuzzo · Hal Daumé III · Honglak Lee · Noah A Smith · Richard Sutton · Jiaqian YU · Vitaly Kuznetsov · Luke Vilnis · Hanchen Xiong · Calvin Murdock · Thomas Unterthiner · Jean-Francis Roy · Martin Renqiang Min · Hichem SAHBI · Fabio Massimo Zanzotto -
2014 Poster: Conditional Random Field Autoencoders for Unsupervised Structured Prediction »
Waleed Ammar · Chris Dyer · Noah A Smith -
2014 Oral: Conditional Random Field Autoencoders for Unsupervised Structured Prediction »
Waleed Ammar · Chris Dyer · Noah A Smith -
2012 Poster: Tensor Decomposition for Fast Parsing with Latent-Variable PCFGs »
Shay Cohen · Michael Collins -
2008 Poster: Unsupervised Bayesian Parameter Estimation for Probabilistic Grammars »
Shay Cohen · Kevin Gimpel · Noah A Smith