Timezone: »
Poster
Probabilistic Multi-Task Feature Selection
Yu Zhang · Dit-Yan Yeung · Qian Xu
Recently, some variants of the $l_1$ norm, particularly matrix norms such as the $l_{1,2}$ and $l_{1,\infty}$ norms, have been widely used in multi-task learning, compressed sensing and other related areas to enforce sparsity via joint regularization. In this paper, we unify the $l_{1,2}$ and $l_{1,\infty}$ norms by considering a family of $l_{1,q}$ norms for $1 < q\le\infty$ and study the problem of determining the most appropriate sparsity enforcing norm to use in the context of multi-task feature selection. Using the generalized normal distribution, we provide a probabilistic interpretation of the general multi-task feature selection problem using the $l_{1,q}$ norm. Based on this probabilistic interpretation, we develop a probabilistic model using the noninformative Jeffreys prior. We also extend the model to learn and exploit more general types of pairwise relationships between tasks. For both versions of the model, we devise expectation-maximization~(EM) algorithms to learn all model parameters, including $q$, automatically. Experiments have been conducted on two cancer classification applications using microarray gene expression data.
Author Information
Yu Zhang (Hong Kong Baptist University)
Dit-Yan Yeung (Hong Kong University of Science and Technology)
Qian Xu (Hong Kong University of Science and Technology)
More from the Same Authors
-
2022 Spotlight: Improving 3D-aware Image Synthesis with A Geometry-aware Discriminator »
Zifan Shi · Yinghao Xu · Yujun Shen · Deli Zhao · Qifeng Chen · Dit-Yan Yeung -
2022 Spotlight: Lightning Talks 5B-1 »
Devansh Arpit · Xiaojun Xu · Zifan Shi · Ivan Skorokhodov · Shayan Shekarforoush · Zhan Tong · Yiqun Wang · Shichong Peng · Linyi Li · Ivan Skorokhodov · Huan Wang · Yibing Song · David Lindell · Yinghao Xu · Seyed Alireza Moazenipourasil · Sergey Tulyakov · Peter Wonka · Yiqun Wang · Ke Li · David Fleet · Yujun Shen · Yingbo Zhou · Bo Li · Jue Wang · Peter Wonka · Marcus Brubaker · Caiming Xiong · Limin Wang · Deli Zhao · Qifeng Chen · Dit-Yan Yeung -
2022 Spotlight: Lightning Talks 4A-3 »
Zhihan Gao · Yabin Wang · Xingyu Qu · Luziwei Leng · Mingqing Xiao · Bohan Wang · Yu Shen · Zhiwu Huang · Xingjian Shi · Qi Meng · Yupeng Lu · Diyang Li · Qingyan Meng · Kaiwei Che · Yang Li · Hao Wang · Huishuai Zhang · Zongpeng Zhang · Kaixuan Zhang · Xiaopeng Hong · Xiaohan Zhao · Di He · Jianguo Zhang · Yaofeng Tu · Bin Gu · Yi Zhu · Ruoyu Sun · Yuyang (Bernie) Wang · Zhouchen Lin · Qinghu Meng · Wei Chen · Wentao Zhang · Bin CUI · Jie Cheng · Zhi-Ming Ma · Mu Li · Qinghai Guo · Dit-Yan Yeung · Tie-Yan Liu · Jianxing Liao -
2022 Spotlight: Earthformer: Exploring Space-Time Transformers for Earth System Forecasting »
Zhihan Gao · Xingjian Shi · Hao Wang · Yi Zhu · Yuyang (Bernie) Wang · Mu Li · Dit-Yan Yeung -
2022 Poster: Improving 3D-aware Image Synthesis with A Geometry-aware Discriminator »
Zifan Shi · Yinghao Xu · Yujun Shen · Deli Zhao · Qifeng Chen · Dit-Yan Yeung -
2022 Poster: Earthformer: Exploring Space-Time Transformers for Earth System Forecasting »
Zhihan Gao · Xingjian Shi · Hao Wang · Yi Zhu · Yuyang (Bernie) Wang · Mu Li · Dit-Yan Yeung -
2017 Poster: Deep Learning for Precipitation Nowcasting: A Benchmark and A New Model »
Xingjian Shi · Zhihan Gao · Leonard Lausen · Hao Wang · Dit-Yan Yeung · Wai-kin Wong · Wang-chun WOO -
2017 Spotlight: Deep Learning for Precipitation Nowcasting: A Benchmark and A New Model »
Xingjian Shi · Zhihan Gao · Leonard Lausen · Hao Wang · Dit-Yan Yeung · Wai-kin Wong · Wang-chun WOO -
2016 Poster: Natural-Parameter Networks: A Class of Probabilistic Neural Networks »
Hao Wang · Xingjian SHI · Dit-Yan Yeung -
2016 Poster: Collaborative Recurrent Autoencoder: Recommend while Learning to Fill in the Blanks »
Hao Wang · Xingjian SHI · Dit-Yan Yeung -
2015 Poster: Convolutional LSTM Network: A Machine Learning Approach for Precipitation Nowcasting »
Xingjian Shi · Zhourong Chen · Hao Wang · Dit-Yan Yeung · Wai-kin Wong · Wang-chun WOO -
2013 Poster: Learning a Deep Compact Image Representation for Visual Tracking »
Naiyan Wang · Dit-Yan Yeung -
2013 Poster: Heterogeneous-Neighborhood-based Multi-Task Local Learning Algorithms »
Yu Zhang -
2012 Poster: Co-Regularized Hashing for Multimodal Data »
Yi Zhen · Dit-Yan Yeung -
2010 Poster: Worst-Case Linear Discriminant Analysis »
Yu Zhang · Dit-Yan Yeung -
2009 Poster: Probabilistic Relational PCA »
Wu-Jun Li · Dit-Yan Yeung · Zhihua Zhang -
2009 Spotlight: Probabilistic Relational PCA »
Wu-Jun Li · Dit-Yan Yeung · Zhihua Zhang -
2008 Poster: Posterior Consistency of the Silverman g-prior in Bayesian Model Choice »
Zhihua Zhang · Michael Jordan · Dit-Yan Yeung -
2008 Spotlight: Posterior Consistency of the Silverman g-prior in Bayesian Model Choice »
Zhihua Zhang · Michael Jordan · Dit-Yan Yeung