Timezone: »

Feature Construction for Inverse Reinforcement Learning
Sergey Levine · Zoran Popovic · Vladlen Koltun

Wed Dec 08 12:00 AM -- 12:00 AM (PST) @

The goal of inverse reinforcement learning is to find a reward function for a Markov decision process, given example traces from its optimal policy. Current IRL techniques generally rely on user-supplied features that form a concise basis for the reward. We present an algorithm that instead constructs reward features from a large collection of component features, by building logical conjunctions of those component features that are relevant to the example policy. Given example traces, the algorithm returns a reward function as well as the constructed features. The reward function can be used to recover a full, deterministic, stationary policy, and the features can be used to transplant the reward function into any novel environment on which the component features are well defined.

Author Information

Sergey Levine (UC Berkeley)
Sergey Levine

Sergey Levine received a BS and MS in Computer Science from Stanford University in 2009, and a Ph.D. in Computer Science from Stanford University in 2014. He joined the faculty of the Department of Electrical Engineering and Computer Sciences at UC Berkeley in fall 2016. His work focuses on machine learning for decision making and control, with an emphasis on deep learning and reinforcement learning algorithms. Applications of his work include autonomous robots and vehicles, as well as applications in other decision-making domains. His research includes developing algorithms for end-to-end training of deep neural network policies that combine perception and control, scalable algorithms for inverse reinforcement learning, deep reinforcement learning algorithms, and more

Zoran Popovic (University of Washington)
Vladlen Koltun (Adobe Research)

More from the Same Authors