Timezone: »
In spite of its central role and position between physics and biology, chemistry has remained in a somewhat backward state of informatics development compared to its two close relatives, primarily for historical reasons. Computers, open public databases, and large collaborative projects have become the pervasive hallmark of research in physics and biology, but are still at an early stage of development in chemistry. Recently, however, large repositories with millions of small molecules have become freely available, and equally large repositories of chemical reactions have also become available, albeit not freely. These data create a wealth of interesting informatics and machine learning challenges to efficiently store, search, and predict the physical, chemical, and biological properties of small molecules and reactions and chart ``chemical space'', with significant scientific and technological impacts.
Small organic molecules, in particular, with at most a few dozen atoms play a fundamental role in chemistry, biology, biotechnology, and pharmacology. They can be used, for instance, as combinatorial building blocks for chemical synthesis, as molecular probes for perturbing and analyzing biological systems in chemical genomics and systems biology, and for the screening, design, and discovery of new drugs and other useful compounds. Huge arrays of new small molecules can be produced in a relatively short time. Chemoinformatics methods must be able to cope with the inherently graphical, non-vectorial, nature of raw chemical information on small organic molecules and organic reactions, and the vast combinatorial nature of chemical space, containing over 1060 possible small organic molecules. Recently described grand challenges for chemoinformatics include: (1) overcoming stalled drug discovery; (2) helping to develop green chemistry and address global warming; (3) understanding life from a chemical perspective; and (4) enabling the network of the world\'s chemical and biological information to be accessible and interpretable.
This one day workshop will provide a forum to brainstorm about these issues, explore the role and contributions machine learning methods can make to chemistry and chemoinformatics, and hopefully foster new ideas and collaborations.
Author Information
Pierre Baldi (UC Irvine)
Klaus-Robert Müller (TU Berlin)
Gisbert Schneider (ETH)
More from the Same Authors
-
2021 : Deep learning reconstruction of the neutrino energy with a shallow Askaryan detector »
Stephen McAleer · Christian Glaser · Pierre Baldi -
2021 : G-SpaNet: Generalized Permutationless Set Assignment for Particle Physics using Symmetry Preserving Attention »
Alexander Shmakov · Shih-chieh Hsu · Pierre Baldi -
2022 : Geometry-aware Autoregressive Models for Calorimeter Shower Simulations »
Junze Liu · Aishik Ghosh · Dylan Smith · Pierre Baldi · Daniel Whiteson -
2022 : Foundations of Attention Mechanisms in Deep Neural Network Architectures »
Pierre Baldi · Roman Vershynin -
2022 : Feasible Adversarial Robust Reinforcement Learning for Underspecified Environments »
JB Lanier · Stephen McAleer · Pierre Baldi · Roy Fox -
2022 : Foundations of Attention Mechanisms in Deep Neural Network Architectures »
Pierre Baldi · Roman Vershynin -
2022 Poster: So3krates: Equivariant attention for interactions on arbitrary length-scales in molecular systems »
Thorben Frank · Oliver Unke · Klaus-Robert Müller -
2021 Poster: Efficient hierarchical Bayesian inference for spatio-temporal regression models in neuroimaging »
Ali Hashemi · Yijing Gao · Chang Cai · Sanjay Ghosh · Klaus-Robert Müller · Srikantan Nagarajan · Stefan Haufe -
2021 Poster: XDO: A Double Oracle Algorithm for Extensive-Form Games »
Stephen McAleer · JB Lanier · Kevin A Wang · Pierre Baldi · Roy Fox -
2021 Poster: SE(3)-equivariant prediction of molecular wavefunctions and electronic densities »
Oliver Unke · Mihail Bogojeski · Michael Gastegger · Mario Geiger · Tess Smidt · Klaus-Robert Müller -
2020 : Panel »
Alan Aspuru-Guzik · Jennifer Listgarten · Klaus-Robert Müller · Nadine Schneider -
2020 : Invited Talk: Klaus Robert-Müller & Kristof Schütt: Machine Learning meets Quantum Chemistry »
Klaus-Robert Müller · Kristof Schütt -
2020 Poster: Pipeline PSRO: A Scalable Approach for Finding Approximate Nash Equilibria in Large Games »
Stephen McAleer · JB Lanier · Roy Fox · Pierre Baldi -
2019 Poster: Modeling Dynamic Functional Connectivity with Latent Factor Gaussian Processes »
Lingge Li · Dustin Pluta · Babak Shahbaba · Norbert Fortin · Hernando Ombao · Pierre Baldi -
2019 Demonstration: Learning Machines can Curl - Adaptive Deep Reinforcement Learning enables the robot Curly to win against human players in an icy world »
Dong-Ok Won · Sang-Hoon Lee · Klaus-Robert Müller · Seong-Whan Lee -
2019 Poster: Explanations can be manipulated and geometry is to blame »
Ann-Kathrin Dombrowski · Maximillian Alber · Christopher Anders · Marcel Ackermann · Klaus-Robert Müller · Pan Kessel -
2018 Workshop: Machine Learning for Molecules and Materials »
José Miguel Hernández-Lobato · Klaus-Robert Müller · Brooks Paige · Matt Kusner · Stefan Chmiela · Kristof Schütt -
2018 Poster: On Neuronal Capacity »
Pierre Baldi · Roman Vershynin -
2018 Oral: On Neuronal Capacity »
Pierre Baldi · Roman Vershynin -
2017 : Opening Remarks »
Klaus-Robert Müller -
2017 Workshop: Interpreting, Explaining and Visualizing Deep Learning - Now what ? »
Klaus-Robert Müller · Andrea Vedaldi · Lars K Hansen · Wojciech Samek · Grégoire Montavon -
2017 : Poster session »
Abbas Zaidi · Christoph Kurz · David Heckerman · YiJyun Lin · Stefan Riezler · Ilya Shpitser · Songbai Yan · Olivier Goudet · Yash Deshpande · Judea Pearl · Jovana Mitrovic · Brian Vegetabile · Tae Hwy Lee · Karen Sachs · Karthika Mohan · Reagan Rose · Julius Ramakers · Negar Hassanpour · Pierre Baldi · Razieh Nabi · Noah Hammarlund · Eli Sherman · Carolin Lawrence · Fattaneh Jabbari · Vira Semenova · Maria Dimakopoulou · Pratik Gajane · Russell Greiner · Ilias Zadik · Alexander Blocker · Hao Xu · Tal EL HAY · Tony Jebara · Benoit Rostykus -
2017 Workshop: Machine Learning for Molecules and Materials »
Kristof Schütt · Klaus-Robert Müller · Anatole von Lilienfeld · José Miguel Hernández-Lobato · Klaus-Robert Müller · Alan Aspuru-Guzik · Bharath Ramsundar · Matt Kusner · Brooks Paige · Stefan Chmiela · Alexandre Tkatchenko · Anatole von Lilienfeld · Koji Tsuda -
2017 : Opening remarks »
Klaus-Robert Müller -
2017 Poster: SchNet: A continuous-filter convolutional neural network for modeling quantum interactions »
Kristof Schütt · Pieter-Jan Kindermans · Huziel Enoc Sauceda Felix · Stefan Chmiela · Alexandre Tkatchenko · Klaus-Robert Müller -
2017 Poster: An Empirical Study on The Properties of Random Bases for Kernel Methods »
Maximilian Alber · Pieter-Jan Kindermans · Kristof Schütt · Klaus-Robert Müller · Fei Sha -
2016 : Panel Discussion »
Gisbert Schneider · Ross E Goodwin · Simon Colton · Russ Salakhutdinov · Thorsten Joachims · Florian Pinel -
2016 : Artificially-intelligent drug design »
Gisbert Schneider -
2016 Poster: Wasserstein Training of Restricted Boltzmann Machines »
Grégoire Montavon · Klaus-Robert Müller · Marco Cuturi -
2014 Workshop: High-energy particle physics, machine learning, and the HiggsML data challenge (HEPML) »
Glen Cowan · Balázs Kégl · Kyle Cranmer · Gábor Melis · Tim Salimans · Vladimir Vava Gligorov · Daniel Whiteson · Lester Mackey · Wojciech Kotlowski · Roberto Díaz Morales · Pierre Baldi · Cecile Germain · David Rousseau · Isabelle Guyon · Tianqi Chen -
2014 Poster: Searching for Higgs Boson Decay Modes with Deep Learning »
Peter Sadowski · Daniel Whiteson · Pierre Baldi -
2014 Poster: Covariance shrinkage for autocorrelated data »
Daniel Bartz · Klaus-Robert Müller -
2014 Spotlight: Searching for Higgs Boson Decay Modes with Deep Learning »
Peter Sadowski · Daniel Whiteson · Pierre Baldi -
2013 Poster: Robust Spatial Filtering with Beta Divergence »
Wojciech Samek · Duncan Blythe · Klaus-Robert Müller · Motoaki Kawanabe -
2013 Poster: Generalizing Analytic Shrinkage for Arbitrary Covariance Structures »
Daniel Bartz · Klaus-Robert Müller -
2013 Spotlight: Robust Spatial Filtering with Beta Divergence »
Wojciech Samek · Duncan Blythe · Klaus-Robert Müller · Motoaki Kawanabe -
2013 Spotlight: Generalizing Analytic Shrinkage for Arbitrary Covariance Structures »
Daniel Bartz · Klaus-Robert Müller -
2013 Poster: Understanding Dropout »
Pierre Baldi · Peter Sadowski -
2013 Oral: Understanding Dropout »
Pierre Baldi · Peter Sadowski -
2012 Poster: Deep Spatio-Temporal Architectures and Learning for Protein Structure Prediction »
Pietro Di Lena · Pierre Baldi · Ken Nagata -
2012 Spotlight: Deep Spatio-Temporal Architectures and Learning for Protein Structure Prediction »
Pietro Di Lena · Pierre Baldi · Ken Nagata -
2012 Poster: Learning Invariant Representations of Molecules for Atomization Energy Prediction »
Grégoire Montavon · Katja Hansen · Siamac Fazli · Matthias Rupp · Franziska Biegler · Andreas Ziehe · Alexandre Tkatchenko · Anatole von Lilienfeld · Klaus-Robert Müller -
2011 Poster: A Machine Learning Approach to Predict Chemical Reactions »
Matthew A Kayala · Pierre Baldi -
2011 Demonstration: Real-time social media analysis with TWIMPACT »
Mikio L Braun · Matthias L Jugel · Klaus-Robert Müller -
2010 Poster: Layer-wise analysis of deep networks with Gaussian kernels »
Grégoire Montavon · Mikio L Braun · Klaus-Robert Müller -
2009 Poster: Efficient and Accurate Lp-Norm Multiple Kernel Learning »
Marius Kloft · Ulf Brefeld · Soeren Sonnenburg · Pavel Laskov · Klaus-Robert Müller · Alexander Zien -
2009 Poster: Subject independent EEG-based BCI decoding »
Siamac Fazli · Cristian Grozea · Márton Danóczy · Benjamin Blankertz · Florin Popescu · Klaus-Robert Müller -
2009 Spotlight: Subject independent EEG-based BCI decoding »
Siamac Fazli · Cristian Grozea · Márton Danóczy · Benjamin Blankertz · Florin Popescu · Klaus-Robert Müller -
2008 Poster: Playing Pinball with non-invasive BCI »
Michael W Tangermann (ne Schröder) · Matthias Krauledat · Konrad Grzeska · Max Sagebaum · Benjamin Blankertz · Klaus-Robert Müller -
2008 Poster: Estimating vector fields using sparse basis field expansions »
Stefan Haufe · Vadim Nikulin · Andreas Ziehe · Klaus-Robert Müller · Guido Nolte -
2007 Spotlight: Invariant Common Spatial Patterns: Alleviating Nonstationarities in Brain-Computer Interfacing »
Benjamin Blankertz · Motoaki Kawanabe · Ryota Tomioka · Friederike Hohlefeld · Vadim Nikulin · Klaus-Robert Müller -
2007 Poster: Invariant Common Spatial Patterns: Alleviating Nonstationarities in Brain-Computer Interfacing »
Benjamin Blankertz · Motoaki Kawanabe · Ryota Tomioka · Friederike Hohlefeld · Vadim Nikulin · Klaus-Robert Müller -
2007 Poster: Heterogeneous Component Analysis »
Shigeyuki Oba · Motoaki Kawanabe · Klaus-Robert Müller · Shin Ishii -
2007 Spotlight: Heterogeneous Component Analysis »
Shigeyuki Oba · Motoaki Kawanabe · Klaus-Robert Müller · Shin Ishii -
2007 Poster: Mining Internet-Scale Software Repositories »
Erik Linstead · Paul Rigor, Ph.D. · sushil bajracharya · cristina lopes · Pierre Baldi -
2006 Workshop: Current Trends in Brain-Computer Interfacing »
Klaus-Robert Müller · José del R. Millán · Matthias Krauledat · Roderick Murray-Smith · Benjamin Blankertz -
2006 Poster: Logistic Regression for Single Trial EEG Classification »
Ryota Tomioka · Kazuyuki Aihara · Klaus-Robert Müller -
2006 Poster: Towards Zero-Training for Brain-Computer Interface Experiments »
Matthias Krauledat · Michael Schröder · Benjamin Blankertz · Klaus-Robert Müller -
2006 Spotlight: Logistic Regression for Single Trial EEG Classification »
Ryota Tomioka · Kazuyuki Aihara · Klaus-Robert Müller -
2006 Poster: A Scalable Machine Learning Approach to Go »
Lin Wu · Pierre Baldi -
2006 Poster: Inducing Metric Violations in Human Similarity Judgements »
Julian Laub · Jakob H Macke · Klaus-Robert Müller · Felix A Wichmann -
2006 Poster: Denoising and Dimension Reduction in Feature Space »
Mikio L Braun · Joachim M Buhmann · Klaus-Robert Müller -
2006 Talk: A Scalable Machine Learning Approach to Go »
Lin Wu · Pierre Baldi