Timezone: »
Over the past 15 years online advertising, a \$$65 billion industry worldwide in 2009, has been pivotal to the success of the world wide web. This success has arisen largely from the transformation of the advertising industry from a low-tech, human intensive, ``Mad Men'' (ref AMC TV Series) way of doing work (that were common place for much of the 20th century and the early days of online advertising) to highly optimized, mathematical, machine learning-centric processes (some of which have been adapted from Wall Street) that form the backbone of many current online advertising systems.
The dramatic growth of online advertising poses great challenges to the machine learning research community and calls for new technologies to be developed. Online advertising is a complex problem, especially from machine learning point of view. It contains multiple parties (i.e., advertisers, users, publishers, and ad platforms), which interact with each other and also have conflict of interests. It is highly dynamic in terms of the rapid change of user information needs, non-stationary bids of advertisers, and the frequent occurrences of ads campaigns. It is of very large scale, with billions of keywords, tens of millions of ads, billions of users, millions of advertisers where events such as clicks and actions can be extremely rare. In addition, the field lies at intersection of machine learning, economics, optimization, distributed systems and information science. For such a complex problem, conventional machine learning technologies and evaluation methodologies might not be sufficient, and the development of new algorithms and theories is sorely needed.
The goal of this workshop is to overview the state of the art in online advertising, and to discuss future directions and challenges in research and development, from a machine learning point of view. We expect the workshop to help develop a
community of researchers who are interested in this area, and yield future collaboration and exchanges.
Possible topics include:
1) Dynamic/non-stationary/online learning algorithms for online advertising
2) Large scale machine learning for online advertising
3) Learning theory for online advertising
4) Learning to rank for ads display
5) Auction mechanism design for paid search, social network advertising and microblog advertising
6) System modeling for ad platform
7) Traffic and click through rate prediction
8) Bids optimization
9) Metrics and evaluation
10) Yield optimisation
11) Behavioral targeting modeling
12) Click fraud detection
13) Privacy in advertising
14) Crowd sourcing and inference
15) Mobile advertising and social advertising
16) Public datasets creation for research on online advertising
Author Information
James G Shanahan (Independent Consultant)
Deepak Agarwal (LinkedIn)
Tao Qin (Microsoft Research)
Tie-Yan Liu (Microsoft Research Asia)
Tie-Yan Liu is an assistant managing director of Microsoft Research Asia, leading the machine learning research area. He is very well known for his pioneer work on learning to rank and computational advertising, and his recent research interests include deep learning, reinforcement learning, and distributed machine learning. Many of his technologies have been transferred to Microsoft’s products and online services (such as Bing, Microsoft Advertising, Windows, Xbox, and Azure), and open-sourced through Microsoft Cognitive Toolkit (CNTK), Microsoft Distributed Machine Learning Toolkit (DMTK), and Microsoft Graph Engine. He has also been actively contributing to academic communities. He is an adjunct/honorary professor at Carnegie Mellon University (CMU), University of Nottingham, and several other universities in China. He has published 200+ papers in refereed conferences and journals, with over 17000 citations. He has won quite a few awards, including the best student paper award at SIGIR (2008), the most cited paper award at Journal of Visual Communications and Image Representation (2004-2006), the research break-through award (2012) and research-team-of-the-year award (2017) at Microsoft Research, and Top-10 Springer Computer Science books by Chinese authors (2015), and the most cited Chinese researcher by Elsevier (2017). He has been invited to serve as general chair, program committee chair, local chair, or area chair for a dozen of top conferences including SIGIR, WWW, KDD, ICML, NIPS, IJCAI, AAAI, ACL, ICTIR, as well as associate editor of ACM Transactions on Information Systems, ACM Transactions on the Web, and Neurocomputing. Tie-Yan Liu is a fellow of the IEEE, and a distinguished member of the ACM.
More from the Same Authors
-
2021 : AI X Science »
Tie-Yan Liu -
2021 Poster: On the Generative Utility of Cyclic Conditionals »
Chang Liu · Haoyue Tang · Tao Qin · Jintao Wang · Tie-Yan Liu -
2021 Poster: Curriculum Offline Imitating Learning »
Minghuan Liu · Hanye Zhao · Zhengyu Yang · Jian Shen · Weinan Zhang · Li Zhao · Tie-Yan Liu -
2021 Poster: Speech-T: Transducer for Text to Speech and Beyond »
Jiawei Chen · Xu Tan · Yichong Leng · Jin Xu · Guihua Wen · Tao Qin · Tie-Yan Liu -
2021 Poster: Stylized Dialogue Generation with Multi-Pass Dual Learning »
Jinpeng Li · Yingce Xia · Rui Yan · Hongda Sun · Dongyan Zhao · Tie-Yan Liu -
2021 Poster: Distributional Reinforcement Learning for Multi-Dimensional Reward Functions »
Pushi Zhang · Xiaoyu Chen · Li Zhao · Wei Xiong · Tao Qin · Tie-Yan Liu -
2021 Poster: Optimizing Information-theoretical Generalization Bound via Anisotropic Noise of SGLD »
Bohan Wang · Huishuai Zhang · Jieyu Zhang · Qi Meng · Wei Chen · Tie-Yan Liu -
2021 Poster: Co-evolution Transformer for Protein Contact Prediction »
He Zhang · Fusong Ju · Jianwei Zhu · Liang He · Bin Shao · Nanning Zheng · Tie-Yan Liu -
2021 Poster: Stable, Fast and Accurate: Kernelized Attention with Relative Positional Encoding »
Shengjie Luo · Shanda Li · Tianle Cai · Di He · Dinglan Peng · Shuxin Zheng · Guolin Ke · Liwei Wang · Tie-Yan Liu -
2021 Poster: Learning Causal Semantic Representation for Out-of-Distribution Prediction »
Chang Liu · Xinwei Sun · Jindong Wang · Haoyue Tang · Tao Li · Tao Qin · Wei Chen · Tie-Yan Liu -
2021 Poster: Object-Aware Regularization for Addressing Causal Confusion in Imitation Learning »
Jongjin Park · Younggyo Seo · Chang Liu · Li Zhao · Tao Qin · Jinwoo Shin · Tie-Yan Liu -
2021 Poster: FastCorrect: Fast Error Correction with Edit Alignment for Automatic Speech Recognition »
Yichong Leng · Xu Tan · Linchen Zhu · Jin Xu · Renqian Luo · Linquan Liu · Tao Qin · Xiangyang Li · Edward Lin · Tie-Yan Liu -
2021 Poster: Do Transformers Really Perform Badly for Graph Representation? »
Chengxuan Ying · Tianle Cai · Shengjie Luo · Shuxin Zheng · Guolin Ke · Di He · Yanming Shen · Tie-Yan Liu -
2021 Poster: R-Drop: Regularized Dropout for Neural Networks »
xiaobo liang · Lijun Wu · Juntao Li · Yue Wang · Qi Meng · Tao Qin · Wei Chen · Min Zhang · Tie-Yan Liu -
2021 Poster: Recovering Latent Causal Factor for Generalization to Distributional Shifts »
Xinwei Sun · Botong Wu · Xiangyu Zheng · Chang Liu · Wei Chen · Tao Qin · Tie-Yan Liu -
2020 Poster: Semi-Supervised Neural Architecture Search »
Renqian Luo · Xu Tan · Rui Wang · Tao Qin · Enhong Chen · Tie-Yan Liu -
2020 Poster: RD$^2$: Reward Decomposition with Representation Decomposition »
Zichuan Lin · Derek Yang · Li Zhao · Tao Qin · Guangwen Yang · Tie-Yan Liu -
2020 Poster: MPNet: Masked and Permuted Pre-training for Language Understanding »
Kaitao Song · Xu Tan · Tao Qin · Jianfeng Lu · Tie-Yan Liu -
2019 Poster: Neural Machine Translation with Soft Prototype »
Yiren Wang · Yingce Xia · Fei Tian · Fei Gao · Tao Qin · Cheng Xiang Zhai · Tie-Yan Liu -
2019 Poster: FastSpeech: Fast, Robust and Controllable Text to Speech »
Yi Ren · Yangjun Ruan · Xu Tan · Tao Qin · Sheng Zhao · Zhou Zhao · Tie-Yan Liu -
2019 Poster: Fully Parameterized Quantile Function for Distributional Reinforcement Learning »
Derek Yang · Li Zhao · Zichuan Lin · Tao Qin · Jiang Bian · Tie-Yan Liu -
2019 Poster: Distributional Reward Decomposition for Reinforcement Learning »
Zichuan Lin · Li Zhao · Derek Yang · Tao Qin · Tie-Yan Liu · Guangwen Yang -
2019 Poster: Normalization Helps Training of Quantized LSTM »
Lu Hou · Jinhua Zhu · James Kwok · Fei Gao · Tao Qin · Tie-Yan Liu -
2018 Poster: Neural Architecture Optimization »
Renqian Luo · Fei Tian · Tao Qin · Enhong Chen · Tie-Yan Liu -
2018 Poster: Learning to Teach with Dynamic Loss Functions »
Lijun Wu · Fei Tian · Yingce Xia · Yang Fan · Tao Qin · Lai Jian-Huang · Tie-Yan Liu -
2018 Poster: On the Local Hessian in Back-propagation »
Huishuai Zhang · Wei Chen · Tie-Yan Liu -
2018 Poster: Layer-Wise Coordination between Encoder and Decoder for Neural Machine Translation »
Tianyu He · Xu Tan · Yingce Xia · Di He · Tao Qin · Zhibo Chen · Tie-Yan Liu -
2018 Poster: FRAGE: Frequency-Agnostic Word Representation »
Chengyue Gong · Di He · Xu Tan · Tao Qin · Liwei Wang · Tie-Yan Liu -
2017 Poster: Decoding with Value Networks for Neural Machine Translation »
Di He · Hanqing Lu · Yingce Xia · Tao Qin · Liwei Wang · Tie-Yan Liu -
2017 Poster: Finite sample analysis of the GTD Policy Evaluation Algorithms in Markov Setting »
Yue Wang · Wei Chen · Yuting Liu · Zhi-Ming Ma · Tie-Yan Liu -
2017 Poster: Deliberation Networks: Sequence Generation Beyond One-Pass Decoding »
Yingce Xia · Fei Tian · Lijun Wu · Jianxin Lin · Tao Qin · Nenghai Yu · Tie-Yan Liu -
2017 Poster: LightGBM: A Highly Efficient Gradient Boosting Decision Tree »
Guolin Ke · Qi Meng · Thomas Finley · Taifeng Wang · Wei Chen · Weidong Ma · Qiwei Ye · Tie-Yan Liu -
2016 Poster: A Communication-Efficient Parallel Algorithm for Decision Tree »
Qi Meng · Guolin Ke · Taifeng Wang · Wei Chen · Qiwei Ye · Zhi-Ming Ma · Tie-Yan Liu -
2016 Poster: Dual Learning for Machine Translation »
Di He · Yingce Xia · Tao Qin · Liwei Wang · Nenghai Yu · Tie-Yan Liu · Wei-Ying Ma -
2016 Poster: LightRNN: Memory and Computation-Efficient Recurrent Neural Networks »
Xiang Li · Tao Qin · Jian Yang · Xiaolin Hu · Tie-Yan Liu -
2013 Poster: Estimation Bias in Multi-Armed Bandit Algorithms for Search Advertising »
Min Xu · Tao Qin · Tie-Yan Liu -
2012 Poster: Statistical Consistency of Ranking Methods in A Rank-Differentiable Probability Space »
Yanyan Lan · Jiafeng Guo · Xueqi Cheng · Tie-Yan Liu -
2012 Spotlight: Statistical Consistency of Ranking Methods in A Rank-Differentiable Probability Space »
Yanyan Lan · Jiafeng Guo · Xueqi Cheng · Tie-Yan Liu -
2010 Poster: Two-Layer Generalization Analysis for Ranking Using Rademacher Average »
Wei Chen · Tie-Yan Liu · Zhi-Ming Ma -
2010 Poster: A New Probabilistic Model for Rank Aggregation »
Tao Qin · Xiubo Geng · Tie-Yan Liu -
2009 Poster: Statistical Consistency of Top-k Ranking »
fen xia · Tie-Yan Liu · Hang Li -
2009 Poster: Ranking Measures and Loss Functions in Learning to Rank »
Wei Chen · Tie-Yan Liu · Yanyan Lan · Zhi-Ming Ma · Hang Li -
2008 Poster: Global Ranking Using Continuous Conditional Random Fields »
Tao Qin · Tie-Yan Liu · Xu-Dong Zhang · De-Sheng Wang · Hang Li -
2008 Poster: Online Models for Content Optimization »
Deepak Agarwal · Bee-Chung Chen · Pradheep Elango · Nitin Motgi · Seung-Taek Park · Raghu Ramakrishnan · Scott Roy · Joe Zachariah -
2008 Oral: Global Ranking Using Continuous Conditional Random Fields »
Tao Qin · Tie-Yan Liu · Xu-Dong Zhang · De-Sheng Wang · Hang Li -
2008 Poster: Fast Computation of Posterior Mode in Multi-Level Hierarchical Models »
Deepak Agarwal · Liang Zhang -
2008 Spotlight: Fast Computation of Posterior Mode in Multi-Level Hierarchical Models »
Deepak Agarwal · Liang Zhang