Timezone: »

Invited Talk (Posner Lecture)
How to Grow a Mind: Statistics, Structure and Abstraction
Josh Tenenbaum

Thu Dec 09 10:40 AM -- 11:30 AM (PST) @ Regency Ballroom

How do humans come to know so much about the world from so little data? Even young children can infer the meanings of words, the hidden properties of objects, or the existence of causal relations from just one or a few relevant observations -- far outstripping the capabilities of conventional learning machines. How do they do it -- and how can we bring machines closer to these human-like learning abilities? I will argue that people's everyday inductive leaps can be understood in terms of (approximations to) probabilistic inference over generative models of the world. These models can have rich latent structure based on abstract knowledge representations, what cognitive psychologists have sometimes called "intuitive theories", "mental models", or "schemas". They also typically have a hierarchical structure supporting inference at multiple levels, or "learning to learn", where abstract knowledge may itself be learned from experience at the same time as it guides more specific generalizations from sparse data.

This talk will focus on models of learning and "learning to learn" about categories, word meanings and causal relations. I will show in each of these settings how human learners can balance the need for strongly constraining inductive biases -- necessary for rapid generalization -- with the flexibility to adapt to the structure of new environments, learning new inductive biases for which our minds could not have been pre-programmed. I will also discuss briefly how this approach extends to richer forms of knowledge, such as intuitive psychology and social inferences, or physical reasoning. Finally, I will raise some challenges for our current state of understanding about learning in the brain, and neurally inspired computational models.

Author Information

Josh Tenenbaum (MIT)

Josh Tenenbaum is an Associate Professor of Computational Cognitive Science at MIT in the Department of Brain and Cognitive Sciences and the Computer Science and Artificial Intelligence Laboratory (CSAIL). He received his PhD from MIT in 1999, and was an Assistant Professor at Stanford University from 1999 to 2002. He studies learning and inference in humans and machines, with the twin goals of understanding human intelligence in computational terms and bringing computers closer to human capacities. He focuses on problems of inductive generalization from limited data -- learning concepts and word meanings, inferring causal relations or goals -- and learning abstract knowledge that supports these inductive leaps in the form of probabilistic generative models or 'intuitive theories'. He has also developed several novel machine learning methods inspired by human learning and perception, most notably Isomap, an approach to unsupervised learning of nonlinear manifolds in high-dimensional data. He has been Associate Editor for the journal Cognitive Science, has been active on program committees for the CogSci and NIPS conferences, and has co-organized a number of workshops, tutorials and summer schools in human and machine learning. Several of his papers have received outstanding paper awards or best student paper awards at the IEEE Computer Vision and Pattern Recognition (CVPR), NIPS, and Cognitive Science conferences. He is the recipient of the New Investigator Award from the Society for Mathematical Psychology (2005), the Early Investigator Award from the Society of Experimental Psychologists (2007), and the Distinguished Scientific Award for Early Career Contribution to Psychology (in the area of cognition and human learning) from the American Psychological Association (2008).

More from the Same Authors