Timezone: »

 
Spotlight
Perceptual Multistability as Markov Chain Monte Carlo Inference
Samuel J Gershman · Edward Vul · Josh Tenenbaum

Wed Dec 09 05:18 PM -- 05:19 PM (PST) @

While many perceptual and cognitive phenomena are well described in terms of Bayesian inference, the necessary computations are intractable at the scale of real-world tasks, and it remains unclear how the human mind approximates Bayesian inference algorithmically. We explore the proposal that for some tasks, humans use a form of Markov Chain Monte Carlo to approximate the posterior distribution over hidden variables. As a case study, we show how several phenomena of perceptual multistability can be explained as MCMC inference in simple graphical models for low-level vision.

Author Information

Samuel J Gershman (Harvard University)
Edward Vul (Massachusetts Institute of Technology)
Josh Tenenbaum (MIT)

Josh Tenenbaum is an Associate Professor of Computational Cognitive Science at MIT in the Department of Brain and Cognitive Sciences and the Computer Science and Artificial Intelligence Laboratory (CSAIL). He received his PhD from MIT in 1999, and was an Assistant Professor at Stanford University from 1999 to 2002. He studies learning and inference in humans and machines, with the twin goals of understanding human intelligence in computational terms and bringing computers closer to human capacities. He focuses on problems of inductive generalization from limited data -- learning concepts and word meanings, inferring causal relations or goals -- and learning abstract knowledge that supports these inductive leaps in the form of probabilistic generative models or 'intuitive theories'. He has also developed several novel machine learning methods inspired by human learning and perception, most notably Isomap, an approach to unsupervised learning of nonlinear manifolds in high-dimensional data. He has been Associate Editor for the journal Cognitive Science, has been active on program committees for the CogSci and NIPS conferences, and has co-organized a number of workshops, tutorials and summer schools in human and machine learning. Several of his papers have received outstanding paper awards or best student paper awards at the IEEE Computer Vision and Pattern Recognition (CVPR), NIPS, and Cognitive Science conferences. He is the recipient of the New Investigator Award from the Society for Mathematical Psychology (2005), the Early Investigator Award from the Society of Experimental Psychologists (2007), and the Distinguished Scientific Award for Early Career Contribution to Psychology (in the area of cognition and human learning) from the American Psychological Association (2008).

Related Events (a corresponding poster, oral, or spotlight)

More from the Same Authors