Timezone: »
When individuals learn facts (e.g., foreign language vocabulary) over multiple study sessions, the temporal spacing of study has a significant impact on memory retention. Behavioral experiments have shown a nonmonotonic relationship between spacing and retention: short or long intervals between study sessions yield lower cued-recall accuracy than intermediate intervals. Appropriate spacing of study can double retention on educationally relevant time scales. We introduce a Multiscale Context Model (MCM) that is able to predict the influence of a particular study schedule on retention for specific material. MCMs prediction is based on empirical data characterizing forgetting of the material following a single study session. MCM is a synthesis of two existing memory models (Staddon, Chelaru, & Higa, 2002; Raaijmakers, 2003). On the surface, these models are unrelated and incompatible, but we show they share a core feature that allows them to be integrated. MCM can determine study schedules that maximize the durability of learning, and has implications for education and training. MCM can be cast either as a neural network with inputs that fluctuate over time, or as a cascade of leaky integrators. MCM is intriguingly similar to a Bayesian multiscale model of memory (Kording, Tenenbaum, Shadmehr, 2007), yet MCM is better able to account for human declarative memory.
Author Information
Michael Mozer (Google Research)
Harold Pashler (UC San Diego)
Nicholas Cepeda
Robert Lindsey (Imagen Technologies)
Edward Vul (Massachusetts Institute of Technology)
Related Events (a corresponding poster, oral, or spotlight)
-
2009 Poster: Predicting the Optimal Spacing of Study: A Multiscale Context Model of Memory »
Thu. Dec 10th 03:00 -- 07:59 AM Room
More from the Same Authors
-
2018 Poster: Learning Deep Disentangled Embeddings With the F-Statistic Loss »
Karl Ridgeway · Michael Mozer -
2018 Poster: Adapted Deep Embeddings: A Synthesis of Methods for k-Shot Inductive Transfer Learning »
Tyler Scott · Karl Ridgeway · Michael Mozer -
2018 Poster: Sparse Attentive Backtracking: Temporal Credit Assignment Through Reminding »
Nan Rosemary Ke · Anirudh Goyal · Olexa Bilaniuk · Jonathan Binas · Michael Mozer · Chris Pal · Yoshua Bengio -
2018 Spotlight: Sparse Attentive Backtracking: Temporal Credit Assignment Through Reminding »
Nan Rosemary Ke · Anirudh Goyal · Olexa Bilaniuk · Jonathan Binas · Michael Mozer · Chris Pal · Yoshua Bengio -
2018 Spotlight: Adapted Deep Embeddings: A Synthesis of Methods for k-Shot Inductive Transfer Learning »
Tyler Scott · Karl Ridgeway · Michael Mozer -
2017 : Access consciousness and the construction of actionable representations »
Michael C Mozer -
2017 : Workshop overview »
Michael Mozer · Angela Yu · Brenden Lake -
2017 Workshop: Cognitively Informed Artificial Intelligence: Insights From Natural Intelligence »
Michael Mozer · Brenden Lake · Angela Yu -
2016 : Overcoming temptation: Incentive design for intertemporal choice »
Michael Mozer -
2016 : Opening Remarks, Invited Talk: Michael C. Mozer »
Michael Mozer -
2014 Workshop: Human Propelled Machine Learning »
Richard Baraniuk · Michael Mozer · Divyanshu Vats · Christoph Studer · Andrew E Waters · Andrew Lan -
2014 Poster: Automatic Discovery of Cognitive Skills to Improve the Prediction of Student Learning »
Robert Lindsey · Mohammad Khajah · Michael Mozer -
2013 Poster: Optimizing Instructional Policies »
Robert Lindsey · Michael Mozer · William J Huggins · Harold Pashler -
2013 Oral: Optimizing Instructional Policies »
Robert Lindsey · Michael Mozer · William J Huggins · Harold Pashler -
2012 Workshop: Personalizing education with machine learning »
Michael Mozer · javier r movellan · Robert Lindsey · Jacob Whitehill -
2011 Poster: An Unsupervised Decontamination Procedure For Improving The Reliability Of Human Judgments »
Michael Mozer · Benjamin Link · Harold Pashler -
2010 Spotlight: Improving Human Judgments by Decontaminating Sequential Dependencies »
Michael Mozer · Harold Pashler · Matthew Wilder · Robert Lindsey · Matt Jones · Michael Jones -
2010 Poster: Improving Human Judgments by Decontaminating Sequential Dependencies »
Michael Mozer · Harold Pashler · Matthew Wilder · Robert Lindsey · Matt Jones · Michael Jones -
2009 Workshop: Bounded-rational analyses of human cognition: Bayesian models, approximate inference, and the brain »
Noah Goodman · Edward Vul · Tom Griffiths · Josh Tenenbaum -
2009 Poster: Perceptual Multistability as Markov Chain Monte Carlo Inference »
Samuel J Gershman · Edward Vul · Josh Tenenbaum -
2009 Spotlight: Perceptual Multistability as Markov Chain Monte Carlo Inference »
Samuel J Gershman · Edward Vul · Josh Tenenbaum -
2009 Poster: Explaining human multiple object tracking as resource-constrained approximate inference in a dynamic probabilistic model »
Edward Vul · Michael C Frank · George Alvarez · Josh Tenenbaum -
2009 Oral: Explaining human multiple object tracking as resource-constrained approximate inference in a dynamic probabilistic model »
Edward Vul · Michael C Frank · George Alvarez · Josh Tenenbaum -
2009 Poster: Sequential effects reflect parallel learning of multiple environmental regularities »
Matthew Wilder · Matt Jones · Michael Mozer -
2008 Poster: Optimal Response Initiation: Why Recent Experience Matters »
Matt Jones · Michael Mozer · Sachiko Kinoshita -
2008 Spotlight: Optimal Response Initiation: Why Recent Experience Matters »
Matt Jones · Michael Mozer · Sachiko Kinoshita -
2008 Poster: Temporal Dynamics of Cognitive Control »
Jeremy Reynolds · Michael Mozer -
2007 Spotlight: Experience-Guided Search: A Theory of Attentional Control »
Michael Mozer · David Baldwin -
2007 Poster: Experience-Guided Search: A Theory of Attentional Control »
Michael Mozer · David Baldwin -
2006 Poster: Context Effects in Category Learning: An Investigation of Four Probabilistic Models »
Michael Mozer · Michael Jones · Michael Shettel