Timezone: »
Second-order maximum-entropy models have recently gained much interest for describing the statistics of binary spike trains. Here, we extend this approach to take continuous stimuli into account as well. By constraining the joint second-order statistics, we obtain a joint Gaussian-Boltzmann distribution of continuous stimuli and binary neural firing patterns, for which we also compute marginal and conditional distributions. This model has the same computational complexity as pure binary models and fitting it to data is a convex problem. We show that the model can be seen as an extension to the classical spike-triggered average/covariance analysis and can be used as a non-linear method for extracting features which a neural population is sensitive to. Further, by calculating the posterior distribution of stimuli given an observed neural response, the model can be used to decode stimuli and yields a natural spike-train metric. Therefore, extending the framework of maximum-entropy models to continuous variables allows us to gain novel insights into the relationship between the firing patterns of neural ensembles and the stimuli they are processing.
Author Information
Sebastian Gerwinn (MPI for Biological Cybernetics & University of Tübingen)
Philipp Berens (MPI for Biological Cybernetics & University of Tübingen)
Matthias Bethge (University of Tübingen)
Related Events (a corresponding poster, oral, or spotlight)
-
2009 Poster: A joint maximum-entropy model for binary neural population patterns and continuous signals »
Wed. Dec 9th 03:00 -- 07:59 AM Room
More from the Same Authors
-
2018 : Adversarial Vision Challenge: Results of the Adversarial Vision Challenge »
Wieland Brendel · Jonas Rauber · Marcel Salathé · Alexey Kurakin · Nicolas Papernot · Sharada Mohanty · Matthias Bethge -
2017 : DeepArt competition »
Alexander Ecker · Leon A Gatys · Matthias Bethge -
2017 Poster: Neural system identification for large populations separating “what” and “where” »
David Klindt · Alexander Ecker · Thomas Euler · Matthias Bethge -
2016 : Matthias Bethge - Texture perception in humans and machines »
Matthias Bethge -
2015 Poster: Texture Synthesis Using Convolutional Neural Networks »
Leon A Gatys · Alexander Ecker · Matthias Bethge -
2015 Poster: Generative Image Modeling Using Spatial LSTMs »
Lucas Theis · Matthias Bethge -
2012 Poster: Training sparse natural image models with a fast Gibbs sampler of an extended state space »
Lucas Theis · Jascha Sohl-Dickstein · Matthias Bethge -
2010 Poster: Evaluating neuronal codes for inference using Fisher information »
Ralf Haefner · Matthias Bethge -
2009 Poster: Hierarchical Modeling of Local Image Features through $L_p$-Nested Symmetric Distributions »
Fabian H Sinz · Eero Simoncelli · Matthias Bethge -
2009 Poster: Neurometric function analysis of population codes »
Philipp Berens · Sebastian Gerwinn · Alexander S Ecker · Matthias Bethge -
2009 Poster: Bayesian estimation of orientation preference maps »
Jakob H Macke · Sebastian Gerwinn · Leonard White · Matthias Kaschube · Matthias Bethge -
2008 Poster: The Conjoint Effect of Divisive Normalization and Orientation Selectivity on Redundancy Reduction »
Fabian H Sinz · Matthias Bethge -
2008 Spotlight: The Conjoint Effect of Divisive Normalization and Orientation Selectivity on Redundancy Reduction »
Fabian H Sinz · Matthias Bethge -
2007 Oral: Bayesian Inference for Spiking Neuron Models with a Sparsity Prior »
Sebastian Gerwinn · Jakob H Macke · Matthias Seeger · Matthias Bethge -
2007 Spotlight: Near-Maximum Entropy Models for Binary Neural Representations of Natural Images »
Matthias Bethge · Philipp Berens -
2007 Poster: Near-Maximum Entropy Models for Binary Neural Representations of Natural Images »
Matthias Bethge · Philipp Berens -
2007 Poster: Bayesian Inference for Spiking Neuron Models with a Sparsity Prior »
Sebastian Gerwinn · Jakob H Macke · Matthias Seeger · Matthias Bethge -
2007 Poster: Receptive Fields without Spike-Triggering »
Jakob H Macke · Günther Zeck · Matthias Bethge