Timezone: »
The estimation of high-dimensional parametric models requires imposing some structure on the models, for instance that they be sparse, or that matrix structured parameters have low rank. A general approach for such structured parametric model estimation is to use regularized M-estimation procedures, which regularize a loss function that measures goodness of fit of the parameters to the data with some regularization function that encourages the assumed structure. In this paper, we aim to provide a unified analysis of such regularized M-estimation procedures. In particular, we report the convergence rates of such estimators in any metric norm. Using just our main theorem, we are able to rederive some of the many existing results, but also obtain a wide range of novel convergence rates results. Our analysis also identifies key properties of loss and regularization functions such as restricted strong convexity, and decomposability, that ensure the corresponding regularized M-estimators have good convergence rates.
Author Information
Sahand N Negahban (University of California, Berkeley)
Pradeep Ravikumar (Carnegie Mellon University)
Martin J Wainwright (UC Berkeley)
Bin Yu
Related Events (a corresponding poster, oral, or spotlight)
-
2009 Poster: A unified framework for high-dimensional analysis of $M$-estimators with decomposable regularizers »
Wed. Dec 9th 03:00 -- 07:59 AM Room
More from the Same Authors
-
2021 Poster: Provable Benefits of Actor-Critic Methods for Offline Reinforcement Learning »
Andrea Zanette · Martin J Wainwright · Emma Brunskill -
2017 Poster: Kernel Feature Selection via Conditional Covariance Minimization »
Jianbo Chen · Mitchell Stern · Martin J Wainwright · Michael Jordan -
2016 Poster: Local Maxima in the Likelihood of Gaussian Mixture Models: Structural Results and Algorithmic Consequences »
Chi Jin · Yuchen Zhang · Sivaraman Balakrishnan · Martin J Wainwright · Michael Jordan -
2016 Poster: Dual Decomposed Learning with Factorwise Oracle for Structural SVM of Large Output Domain »
Ian En-Hsu Yen · Xiangru Huang · Kai Zhong · Ruohan Zhang · Pradeep Ravikumar · Inderjit Dhillon -
2015 Poster: Fast Classification Rates for High-dimensional Gaussian Generative Models »
Tianyang Li · Adarsh Prasad · Pradeep Ravikumar -
2015 Poster: Collaborative Filtering with Graph Information: Consistency and Scalable Methods »
Nikhil Rao · Hsiang-Fu Yu · Pradeep Ravikumar · Inderjit Dhillon -
2015 Spotlight: Collaborative Filtering with Graph Information: Consistency and Scalable Methods »
Nikhil Rao · Hsiang-Fu Yu · Pradeep Ravikumar · Inderjit Dhillon -
2015 Poster: Beyond Sub-Gaussian Measurements: High-Dimensional Structured Estimation with Sub-Exponential Designs »
Vidyashankar Sivakumar · Arindam Banerjee · Pradeep Ravikumar -
2015 Poster: Sparse Linear Programming via Primal and Dual Augmented Coordinate Descent »
Ian En-Hsu Yen · Kai Zhong · Cho-Jui Hsieh · Pradeep Ravikumar · Inderjit Dhillon -
2015 Poster: Fixed-Length Poisson MRF: Adding Dependencies to the Multinomial »
David I Inouye · Pradeep Ravikumar · Inderjit Dhillon -
2015 Poster: Consistent Multilabel Classification »
Oluwasanmi Koyejo · Nagarajan Natarajan · Pradeep Ravikumar · Inderjit Dhillon -
2015 Poster: Closed-form Estimators for High-dimensional Generalized Linear Models »
Eunho Yang · Aurelie Lozano · Pradeep Ravikumar -
2015 Spotlight: Closed-form Estimators for High-dimensional Generalized Linear Models »
Eunho Yang · Aurelie Lozano · Pradeep Ravikumar -
2014 Poster: QUIC & DIRTY: A Quadratic Approximation Approach for Dirty Statistical Models »
Cho-Jui Hsieh · Inderjit Dhillon · Pradeep Ravikumar · Stephen Becker · Peder A Olsen -
2014 Poster: Consistent Binary Classification with Generalized Performance Metrics »
Sanmi Koyejo · Nagarajan Natarajan · Pradeep Ravikumar · Inderjit Dhillon -
2014 Poster: On the Information Theoretic Limits of Learning Ising Models »
Rashish Tandon · Karthikeyan Shanmugam · Pradeep Ravikumar · Alex Dimakis -
2014 Poster: Sparse Random Feature Algorithm as Coordinate Descent in Hilbert Space »
Ian En-Hsu Yen · Ting-Wei Lin · Shou-De Lin · Pradeep Ravikumar · Inderjit Dhillon -
2014 Spotlight: Consistent Binary Classification with Generalized Performance Metrics »
Sanmi Koyejo · Nagarajan Natarajan · Pradeep Ravikumar · Inderjit Dhillon -
2014 Poster: Proximal Quasi-Newton for Computationally Intensive L1-regularized M-estimators »
Kai Zhong · Ian En-Hsu Yen · Inderjit Dhillon · Pradeep Ravikumar -
2014 Poster: A Representation Theory for Ranking Functions »
Harsh H Pareek · Pradeep Ravikumar -
2014 Poster: Capturing Semantically Meaningful Word Dependencies with an Admixture of Poisson MRFs »
David I Inouye · Pradeep Ravikumar · Inderjit Dhillon -
2014 Poster: Constant Nullspace Strong Convexity and Fast Convergence of Proximal Methods under High-Dimensional Settings »
Ian En-Hsu Yen · Cho-Jui Hsieh · Pradeep Ravikumar · Inderjit Dhillon -
2014 Poster: Elementary Estimators for Graphical Models »
Eunho Yang · Aurelie Lozano · Pradeep Ravikumar -
2013 Workshop: Discrete Optimization in Machine Learning: Connecting Theory and Practice »
Stefanie Jegelka · Andreas Krause · Pradeep Ravikumar · Kazuo Murota · Jeffrey A Bilmes · Yisong Yue · Michael Jordan -
2013 Poster: Conditional Random Fields via Univariate Exponential Families »
Eunho Yang · Pradeep Ravikumar · Genevera I Allen · Zhandong Liu -
2013 Poster: On Poisson Graphical Models »
Eunho Yang · Pradeep Ravikumar · Genevera I Allen · Zhandong Liu -
2013 Poster: BIG & QUIC: Sparse Inverse Covariance Estimation for a Million Variables »
Cho-Jui Hsieh · Matyas A Sustik · Inderjit Dhillon · Pradeep Ravikumar · Russell Poldrack -
2013 Oral: BIG & QUIC: Sparse Inverse Covariance Estimation for a Million Variables »
Cho-Jui Hsieh · Matyas A Sustik · Inderjit Dhillon · Pradeep Ravikumar · Russell Poldrack -
2013 Poster: Dirty Statistical Models »
Eunho Yang · Pradeep Ravikumar -
2013 Poster: Large Scale Distributed Sparse Precision Estimation »
Huahua Wang · Arindam Banerjee · Cho-Jui Hsieh · Pradeep Ravikumar · Inderjit Dhillon -
2013 Poster: Learning with Noisy Labels »
Nagarajan Natarajan · Inderjit Dhillon · Pradeep Ravikumar · Ambuj Tewari -
2012 Workshop: Discrete Optimization in Machine Learning (DISCML): Structure and Scalability »
Stefanie Jegelka · Andreas Krause · Jeffrey A Bilmes · Pradeep Ravikumar -
2012 Poster: Iterative ranking from pair-wise comparisons »
Sahand N Negahban · Sewoong Oh · Devavrat Shah -
2012 Poster: Privacy Aware Learning »
John Duchi · Michael Jordan · Martin J Wainwright -
2012 Poster: Graphical Models via Generalized Linear Models »
Eunho Yang · Pradeep Ravikumar · Genevera I Allen · zhandong Liu -
2012 Poster: Communication-Efficient Algorithms for Statistical Optimization »
Yuchen Zhang · John Duchi · Martin J Wainwright -
2012 Poster: No voodoo here! Learning discrete graphical models via inverse covariance estimation »
Po-Ling Loh · Martin J Wainwright -
2012 Oral: No voodoo here! Learning discrete graphical models via inverse covariance estimation »
Po-Ling Loh · Martin J Wainwright -
2012 Oral: Graphical Models via Generalized Linear Models »
Eunho Yang · Pradeep Ravikumar · Genevera I Allen · zhandong Liu -
2012 Spotlight: Iterative ranking from pair-wise comparisons »
Sahand N Negahban · Sewoong Oh · Devavrat Shah -
2012 Oral: Privacy Aware Learning »
John Duchi · Michael Jordan · Martin J Wainwright -
2012 Poster: Stochastic optimization and sparse statistical recovery: Optimal algorithms for high dimensions »
Alekh Agarwal · Sahand N Negahban · Martin J Wainwright -
2012 Poster: Finite Sample Convergence Rates of Zero-Order Stochastic Optimization Methods »
John Duchi · Michael Jordan · Martin J Wainwright · Andre Wibisono -
2012 Poster: A Divide-and-Conquer Method for Sparse Inverse Covariance Estimation »
Cho-Jui Hsieh · Inderjit Dhillon · Pradeep Ravikumar · Arindam Banerjee -
2011 Workshop: Discrete Optimization in Machine Learning (DISCML): Uncertainty, Generalization and Feedback »
Andreas Krause · Pradeep Ravikumar · Stefanie S Jegelka · Jeffrey A Bilmes -
2011 Poster: On Learning Discrete Graphical Models using Greedy Methods »
Ali Jalali · Christopher C Johnson · Pradeep Ravikumar -
2011 Spotlight: On Learning Discrete Graphical Models using Greedy Methods »
Ali Jalali · Christopher C Johnson · Pradeep Ravikumar -
2011 Poster: A More Powerful Two-Sample Test in High Dimensions using Random Projection »
Miles Lopes · Laurent Jacob · Martin J Wainwright -
2011 Poster: Greedy Algorithms for Structurally Constrained High Dimensional Problems »
Ambuj Tewari · Pradeep Ravikumar · Inderjit Dhillon -
2011 Poster: High-dimensional regression with noisy and missing data: Provable guarantees with non-convexity »
Po-Ling Loh · Martin J Wainwright -
2011 Poster: Sparse Inverse Covariance Matrix Estimation Using Quadratic Approximation »
Cho-Jui Hsieh · Matyas A Sustik · Inderjit Dhillon · Pradeep Ravikumar -
2011 Oral: High-dimensional regression with noisy and missing data: Provable guarantees with non-convexity »
Po-Ling Loh · Martin J Wainwright -
2011 Session: Oral Session 5 »
Pradeep Ravikumar -
2011 Poster: Nearest Neighbor based Greedy Coordinate Descent »
Inderjit Dhillon · Pradeep Ravikumar · Ambuj Tewari -
2010 Workshop: Discrete Optimization in Machine Learning: Structures, Algorithms and Applications »
Andreas Krause · Pradeep Ravikumar · Jeffrey A Bilmes · Stefanie Jegelka -
2010 Workshop: Robust Statistical Learning »
Pradeep Ravikumar · Constantine Caramanis · Sujay Sanghavi -
2010 Session: Oral Session 14 »
Pradeep Ravikumar -
2010 Spotlight: Distributed Dual Averaging In Networks »
John Duchi · Alekh Agarwal · Martin J Wainwright -
2010 Poster: Distributed Dual Averaging In Networks »
John Duchi · Alekh Agarwal · Martin J Wainwright -
2010 Oral: A Dirty Model for Multi-task Learning »
Ali Jalali · Pradeep Ravikumar · Sujay Sanghavi · Chao Ruan -
2010 Oral: Fast global convergence rates of gradient methods for high-dimensional statistical recovery »
Alekh Agarwal · Sahand N Negahban · Martin J Wainwright -
2010 Poster: Fast global convergence rates of gradient methods for high-dimensional statistical recovery »
Alekh Agarwal · Sahand N Negahban · Martin J Wainwright -
2010 Poster: A Dirty Model for Multi-task Learning »
Ali Jalali · Pradeep Ravikumar · Sujay Sanghavi · Chao Ruan -
2010 Poster: Predicting Execution Time of Computer Programs Using Sparse Polynomial Regression »
Ling Huang · Jinzhu Jia · Bin Yu · Byung-Gon Chun · Petros Maniatis · Mayur Naik -
2009 Workshop: Discrete Optimization in Machine Learning: Submodularity, Polyhedra and Sparsity »
Andreas Krause · Pradeep Ravikumar · Jeffrey A Bilmes -
2009 Poster: Information-theoretic lower bounds on the oracle complexity of convex optimization »
Alekh Agarwal · Peter Bartlett · Pradeep Ravikumar · Martin J Wainwright -
2009 Poster: Lower bounds on minimax rates for nonparametric regression with additive sparsity and smoothness »
Garvesh Raskutti · Martin J Wainwright · Bin Yu -
2009 Spotlight: Lower bounds on minimax rates for nonparametric regression with additive sparsity and smoothness »
Garvesh Raskutti · Martin J Wainwright · Bin Yu -
2009 Spotlight: Information-theoretic lower bounds on the oracle complexity of convex optimization »
Alekh Agarwal · Peter Bartlett · Pradeep Ravikumar · Martin J Wainwright -
2008 Poster: Nonparametric sparse hierarchical models describe V1 fMRI responses to natural images »
Pradeep Ravikumar · Vincent Vu · Bin Yu · Thomas Naselaris · Kendrick Kay · Jack Gallant -
2008 Poster: High-dimensional union support recovery in multivariate regression »
Guillaume R Obozinski · Martin J Wainwright · Michael Jordan -
2008 Poster: Phase transitions for high-dimensional joint support recovery »
Sahand N Negahban · Martin J Wainwright -
2008 Spotlight: High-dimensional union support recovery in multivariate regression »
Guillaume R Obozinski · Martin J Wainwright · Michael Jordan -
2008 Spotlight: Phase transitions for high-dimensional joint support recovery »
Sahand N Negahban · Martin J Wainwright -
2008 Spotlight: Nonparametric sparse hierarchical models describe V1 fMRI responses to natural images »
Pradeep Ravikumar · Vincent Vu · Bin Yu · Thomas Naselaris · Kendrick Kay · Jack Gallant -
2008 Poster: Model Selection in Gaussian Graphical Models: High-Dimensional Consistency of \ell_1-regularizedMLE »
Pradeep Ravikumar · Garvesh Raskutti · Martin J Wainwright · Bin Yu -
2007 Poster: SpAM: Sparse Additive Models »
Pradeep Ravikumar · Han Liu · John Lafferty · Larry Wasserman -
2007 Spotlight: SpAM: Sparse Additive Models »
Pradeep Ravikumar · Han Liu · John Lafferty · Larry Wasserman -
2007 Spotlight: Estimating divergence functionals and the likelihood ratio by penalized convex risk minimization »
XuanLong Nguyen · Martin J Wainwright · Michael Jordan -
2007 Poster: Estimating divergence functionals and the likelihood ratio by penalized convex risk minimization »
XuanLong Nguyen · Martin J Wainwright · Michael Jordan -
2007 Poster: Loop Series and Bethe Variational Bounds in Attractive Graphical Models »
Erik Sudderth · Martin J Wainwright · Alan S Willsky -
2006 Poster: Inferring Graphical Model Structure using $\ell_1$-Regularized Pseudo-Likelihood »
Martin J Wainwright · Pradeep Ravikumar · John Lafferty -
2006 Spotlight: Inferring Graphical Model Structure using $\ell_1$-Regularized Pseudo-Likelihood »
Martin J Wainwright · Pradeep Ravikumar · John Lafferty