Timezone: »

White Functionals for Anomaly Detection in Dynamical Systems
Marco Cuturi · Jean-Philippe Vert · Alexandre d'Aspremont

Mon Dec 07 07:00 PM -- 11:59 PM (PST) @

We propose new methodologies to detect anomalies in discrete-time processes taking values in a set. The method is based on the inference of functionals whose evaluations on successive states visited by the process have low autocorrelations. Deviations from this behavior are used to flag anomalies. The candidate functionals are estimated in a subset of a reproducing kernel Hilbert space associated with the set where the process takes values. We provide experimental results which show that these techniques compare favorably with other algorithms.

Author Information

Marco Cuturi (Apple)

Marco Cuturi is a research scientist at Apple, in Paris. He received his Ph.D. in 11/2005 from the Ecole des Mines de Paris in applied mathematics. Before that he graduated from National School of Statistics (ENSAE) with a master degree (MVA) from ENS Cachan. He worked as a post-doctoral researcher at the Institute of Statistical Mathematics, Tokyo, between 11/2005 and 3/2007 and then in the financial industry between 4/2007 and 9/2008. After working at the ORFE department of Princeton University as a lecturer between 2/2009 and 8/2010, he was at the Graduate School of Informatics of Kyoto University between 9/2010 and 9/2016 as a tenured associate professor. He joined ENSAE in 9/2016 as a professor, where he is now working part-time. He was at Google between 10/2018 and 1/2022. His main employment is now with Apple, since 1/2022, as a research scientist working on fundamental aspects of machine learning.

Jean-Philippe Vert (Owkin / PSL University)
Alexandre d'Aspremont (CNRS - ENS)

More from the Same Authors