Timezone: »
We study the problem of decision-theoretic online learning (DTOL). Motivated by practical applications, we focus on DTOL when the number of actions is very large. Previous algorithms for learning in this framework have a tunable learning rate parameter, and a major barrier to using online-learning in practical applications is that it is not understood how to set this parameter optimally, particularly when the number of actions is large. In this paper, we offer a clean solution by proposing a novel and completely parameter-free algorithm for DTOL. In addition, we introduce a new notion of regret, which is more natural for applications with a large number of actions. We show that our algorithm achieves good performance with respect to this new notion of regret; in addition, it also achieves performance close to that of the best bounds achieved by previous algorithms with optimally-tuned parameters, according to previous notions of regret.
Author Information
Kamalika Chaudhuri (UCSD)
Yoav Freund (UC San Diego)
Daniel Hsu (Columbia University)
See <https://www.cs.columbia.edu/~djhsu/>
More from the Same Authors
-
2020 : Biased Programmers? Or Biased Data? A Field Experiment in Operationalizing AI Ethics »
Bo Cowgill · Fabrizio Dell'Acqua · Augustin Chaintreau · Nakul Verma · Samuel Deng · Daniel Hsu -
2021 Spotlight: Bayesian decision-making under misspecified priors with applications to meta-learning »
Max Simchowitz · Christopher Tosh · Akshay Krishnamurthy · Daniel Hsu · Thodoris Lykouris · Miro Dudik · Robert Schapire -
2022 : The Interpolated MVU Mechanism For Communication-efficient Private Federated Learning »
Chuan Guo · Kamalika Chaudhuri · Pierre STOCK · Mike Rabbat -
2022 : Forgetting Data from Pre-trained GANs »
Zhifeng Kong · Kamalika Chaudhuri -
2022 : Panel Discussion »
Kamalika Chaudhuri · Been Kim · Dorsa Sadigh · Huan Zhang · Linyi Li -
2022 : Invited Talk: Kamalika Chaudhuri »
Kamalika Chaudhuri -
2022 Poster: Masked Prediction: A Parameter Identifiability View »
Bingbin Liu · Daniel Hsu · Pradeep Ravikumar · Andrej Risteski -
2021 Workshop: Privacy in Machine Learning (PriML) 2021 »
Yu-Xiang Wang · Borja Balle · Giovanni Cherubin · Kamalika Chaudhuri · Antti Honkela · Jonathan Lebensold · Casey Meehan · Mi Jung Park · Adrian Weller · Yuqing Zhu -
2021 Poster: Understanding Instance-based Interpretability of Variational Auto-Encoders »
Zhifeng Kong · Kamalika Chaudhuri -
2021 Poster: Support vector machines and linear regression coincide with very high-dimensional features »
Navid Ardeshir · Clayton Sanford · Daniel Hsu -
2021 Poster: Consistent Non-Parametric Methods for Maximizing Robustness »
Robi Bhattacharjee · Kamalika Chaudhuri -
2021 Poster: Bayesian decision-making under misspecified priors with applications to meta-learning »
Max Simchowitz · Christopher Tosh · Akshay Krishnamurthy · Daniel Hsu · Thodoris Lykouris · Miro Dudik · Robert Schapire -
2020 Workshop: Privacy Preserving Machine Learning - PriML and PPML Joint Edition »
Borja Balle · James Bell · AurĂ©lien Bellet · Kamalika Chaudhuri · Adria Gascon · Antti Honkela · Antti Koskela · Casey Meehan · Olga Ohrimenko · Mi Jung Park · Mariana Raykova · Mary Anne Smart · Yu-Xiang Wang · Adrian Weller -
2020 Poster: Ensuring Fairness Beyond the Training Data »
Debmalya Mandal · Samuel Deng · Suman Jana · Jeannette Wing · Daniel Hsu -
2020 Poster: A Closer Look at Accuracy vs. Robustness »
Yao-Yuan Yang · Cyrus Rashtchian · Hongyang Zhang · Russ Salakhutdinov · Kamalika Chaudhuri -
2019 : Audrey Durand, Douwe Kiela, Kamalika Chaudhuri moderated by Yann Dauphin »
Audrey Durand · Kamalika Chaudhuri · Yann Dauphin · Orhan Firat · Dilan Gorur · Douwe Kiela -
2019 : Kamalika Chaudhuri - A Three Sample Test to Detect Data Copying in Generative Models »
Kamalika Chaudhuri -
2019 Workshop: Privacy in Machine Learning (PriML) »
Borja Balle · Kamalika Chaudhuri · Antti Honkela · Antti Koskela · Casey Meehan · Mi Jung Park · Mary Anne Smart · Mary Anne Smart · Adrian Weller -
2019 Poster: The Label Complexity of Active Learning from Observational Data »
Songbai Yan · Kamalika Chaudhuri · Tara Javidi -
2019 Poster: On the number of variables to use in principal component regression »
Ji Xu · Daniel Hsu -
2019 Poster: Capacity Bounded Differential Privacy »
Kamalika Chaudhuri · Jacob Imola · Ashwin Machanavajjhala -
2018 : Invited talk 3: Challenges in the Privacy-Preserving Analysis of Structured Data »
Kamalika Chaudhuri -
2018 : Plenary Talk 2 »
Kamalika Chaudhuri -
2018 Workshop: Workshop on Security in Machine Learning »
Nicolas Papernot · Jacob Steinhardt · Matt Fredrikson · Kamalika Chaudhuri · Florian Tramer -
2018 Poster: Overfitting or perfect fitting? Risk bounds for classification and regression rules that interpolate »
Mikhail Belkin · Daniel Hsu · Partha P Mitra -
2018 Poster: Benefits of over-parameterization with EM »
Ji Xu · Daniel Hsu · Arian Maleki -
2018 Poster: Leveraged volume sampling for linear regression »
Michal Derezinski · Manfred K. Warmuth · Daniel Hsu -
2018 Spotlight: Leveraged volume sampling for linear regression »
Michal Derezinski · Manfred K. Warmuth · Daniel Hsu -
2017 : Analyzing Robustness of Nearest Neighbors to Adversarial Examples »
Kamalika Chaudhuri -
2017 Poster: Renyi Differential Privacy Mechanisms for Posterior Sampling »
Joseph Geumlek · Shuang Song · Kamalika Chaudhuri -
2017 Poster: Approximation and Convergence Properties of Generative Adversarial Learning »
Shuang Liu · Olivier Bousquet · Kamalika Chaudhuri -
2017 Spotlight: Approximation and Convergence Properties of Generative Adversarial Learning »
Shuang Liu · Olivier Bousquet · Kamalika Chaudhuri -
2017 Poster: Linear regression without correspondence »
Daniel Hsu · Kevin Shi · Xiaorui Sun -
2017 Tutorial: Differentially Private Machine Learning: Theory, Algorithms and Applications »
Kamalika Chaudhuri · Anand D Sarwate -
2016 Poster: Global Analysis of Expectation Maximization for Mixtures of Two Gaussians »
Ji Xu · Daniel Hsu · Arian Maleki -
2016 Oral: Global Analysis of Expectation Maximization for Mixtures of Two Gaussians »
Ji Xu · Daniel Hsu · Arian Maleki -
2016 Poster: Active Learning from Imperfect Labelers »
Songbai Yan · Kamalika Chaudhuri · Tara Javidi -
2016 Poster: Search Improves Label for Active Learning »
Alina Beygelzimer · Daniel Hsu · John Langford · Chicheng Zhang -
2015 : Kamalika Chaudhuri »
Kamalika Chaudhuri -
2015 Workshop: Non-convex Optimization for Machine Learning: Theory and Practice »
Anima Anandkumar · Niranjan Uma Naresh · Kamalika Chaudhuri · Percy Liang · Sewoong Oh -
2015 Poster: Active Learning from Weak and Strong Labelers »
Chicheng Zhang · Kamalika Chaudhuri -
2015 Poster: Mixing Time Estimation in Reversible Markov Chains from a Single Sample Path »
Daniel Hsu · Aryeh Kontorovich · Csaba Szepesvari -
2015 Poster: Scalable Semi-Supervised Aggregation of Classifiers »
Akshay Balsubramani · Yoav Freund -
2015 Poster: Efficient and Parsimonious Agnostic Active Learning »
Tzu-Kuo Huang · Alekh Agarwal · Daniel Hsu · John Langford · Robert Schapire -
2015 Spotlight: Scalable Semi-Supervised Aggregation of Classifiers »
Akshay Balsubramani · Yoav Freund -
2015 Spotlight: Efficient and Parsimonious Agnostic Active Learning »
Tzu-Kuo Huang · Alekh Agarwal · Daniel Hsu · John Langford · Robert Schapire -
2015 Poster: Spectral Learning of Large Structured HMMs for Comparative Epigenomics »
Chicheng Zhang · Jimin Song · Kamalika Chaudhuri · Kevin Chen -
2015 Poster: Convergence Rates of Active Learning for Maximum Likelihood Estimation »
Kamalika Chaudhuri · Sham Kakade · Praneeth Netrapalli · Sujay Sanghavi -
2014 Poster: Beyond Disagreement-Based Agnostic Active Learning »
Chicheng Zhang · Kamalika Chaudhuri -
2014 Poster: Rates of Convergence for Nearest Neighbor Classification »
Kamalika Chaudhuri · Sanjoy Dasgupta -
2014 Spotlight: Beyond Disagreement-Based Agnostic Active Learning »
Chicheng Zhang · Kamalika Chaudhuri -
2014 Spotlight: Rates of Convergence for Nearest Neighbor Classification »
Kamalika Chaudhuri · Sanjoy Dasgupta -
2014 Poster: Scalable Non-linear Learning with Adaptive Polynomial Expansions »
Alekh Agarwal · Alina Beygelzimer · Daniel Hsu · John Langford · Matus J Telgarsky -
2014 Poster: The Large Margin Mechanism for Differentially Private Maximization »
Kamalika Chaudhuri · Daniel Hsu · Shuang Song -
2013 Workshop: Workshop on Spectral Learning »
Byron Boots · Daniel Hsu · Borja Balle -
2013 Poster: The Fast Convergence of Incremental PCA »
Akshay Balsubramani · Sanjoy Dasgupta · Yoav Freund -
2013 Poster: When are Overcomplete Topic Models Identifiable? Uniqueness of Tensor Tucker Decompositions with Structured Sparsity »
Anima Anandkumar · Daniel Hsu · Majid Janzamin · Sham M Kakade -
2013 Poster: Contrastive Learning Using Spectral Methods »
James Y Zou · Daniel Hsu · David Parkes · Ryan Adams -
2013 Poster: A Stability-based Validation Procedure for Differentially Private Machine Learning »
Kamalika Chaudhuri · Staal A Vinterbo -
2012 Poster: Learning Mixtures of Tree Graphical Models »
Anima Anandkumar · Daniel Hsu · Furong Huang · Sham M Kakade -
2012 Poster: A Spectral Algorithm for Latent Dirichlet Allocation »
Anima Anandkumar · Dean P Foster · Daniel Hsu · Sham M Kakade · Yi-Kai Liu -
2012 Poster: Identifiability and Unmixing of Latent Parse Trees »
Percy Liang · Sham M Kakade · Daniel Hsu -
2012 Spotlight: A Spectral Algorithm for Latent Dirichlet Allocation »
Anima Anandkumar · Dean P Foster · Daniel Hsu · Sham M Kakade · Yi-Kai Liu -
2012 Poster: Near-optimal Differentially Private Principal Components »
Kamalika Chaudhuri · Anand D Sarwate · Kaushik Sinha -
2011 Poster: Stochastic convex optimization with bandit feedback »
Alekh Agarwal · Dean P Foster · Daniel Hsu · Sham M Kakade · Sasha Rakhlin -
2011 Poster: Spectral Methods for Learning Multivariate Latent Tree Structure »
Anima Anandkumar · Kamalika Chaudhuri · Daniel Hsu · Sham M Kakade · Le Song · Tong Zhang -
2010 Poster: Rates of convergence for the cluster tree »
Kamalika Chaudhuri · Sanjoy Dasgupta -
2010 Poster: Agnostic Active Learning Without Constraints »
Alina Beygelzimer · Daniel Hsu · John Langford · Tong Zhang -
2009 Poster: Multi-Label Prediction via Compressed Sensing »
Daniel Hsu · Sham M Kakade · John Langford · Tong Zhang -
2009 Oral: Multi-Label Prediction via Compressed Sensing »
Daniel Hsu · Sham M Kakade · John Langford · Tong Zhang -
2008 Poster: Privacy-preserving logistic regression »
Kamalika Chaudhuri · Claire Monteleoni -
2007 Spotlight: A general agnostic active learning algorithm »
Sanjoy Dasgupta · Daniel Hsu · Claire Monteleoni -
2007 Poster: A general agnostic active learning algorithm »
Sanjoy Dasgupta · Daniel Hsu · Claire Monteleoni