Timezone: »
Existing models of categorization typically represent to-be-classified items as points in a multidimensional space. While from a mathematical point of view, an infinite number of basis sets can be used to represent points in this space, the choice of basis set is psychologically crucial. People generally choose the same basis dimensions, and have a strong preference to generalize along the axes of these dimensions, but not "diagonally". What makes some choices of dimension special? We explore the idea that the dimensions used by people echo the natural variation in the environment. Specifically, we present a rational model that does not assume dimensions, but learns the same type of dimensional generalizations that people display. This bias is shaped by exposing the model to many categories with a structure hypothesized to be like those which children encounter. Our model can be viewed as a type of transformed Dirichlet process mixture model, where it is the learning of the base distribution of the Dirichlet process which allows dimensional generalization.The learning behaviour of our model captures the developmental shift from roughly "isotropic" for children to the axis-aligned generalization that adults show.
Author Information
Katherine Heller (Google)
Adam Sanborn (University College London)
Nick Chater
Related Events (a corresponding poster, oral, or spotlight)
-
2009 Spotlight: Hierarchical Learning of Dimensional Biases in Human Categorization »
Thu. Dec 10th 01:20 -- 01:21 AM Room
More from the Same Authors
-
2021 : Maintaining fairness across distribution shifts: do we have viable solutions for real-world applications? »
Jessica Schrouff · Natalie Harris · Sanmi Koyejo · Ibrahim Alabdulmohsin · Eva Schnider · Diana Mincu · Christina Chen · Awa Dieng · Yuan Liu · Vivek Natarajan · Katherine Heller · Alexander D'Amour -
2022 : Participatory Systems for Personalized Prediction »
Hailey James · Chirag Nagpal · Katherine Heller · Berk Ustun -
2022 : Participatory Systems for Personalized Prediction »
Hailey James · Berk Ustun · Chirag Nagpal · Katherine Heller -
2022 : Participatory Systems for Personalized Prediction »
Hailey James · Chirag Nagpal · Katherine Heller · Berk Ustun -
2022 : Participatory Systems for Personalized Prediction »
Hailey James · Chirag Nagpal · Katherine Heller · Berk Ustun -
2022 Poster: Diagnosing failures of fairness transfer across distribution shift in real-world medical settings »
Jessica Schrouff · Natalie Harris · Sanmi Koyejo · Ibrahim Alabdulmohsin · Eva Schnider · Krista Opsahl-Ong · Alexander Brown · Subhrajit Roy · Diana Mincu · Christina Chen · Awa Dieng · Yuan Liu · Vivek Natarajan · Alan Karthikesalingam · Katherine Heller · Silvia Chiappa · Alexander D'Amour -
2020 Workshop: Machine Learning for Mobile Health »
Joseph Futoma · Walter Dempsey · Katherine Heller · Yian Ma · Nicholas Foti · Marianne Njifon · Kelly Zhang · Jieru Shi -
2020 Symposium: COVID-19 Symposium Day 2 »
Andrew Beam · Tristan Naumann · Katherine Heller · Elaine Nsoesie -
2020 Symposium: COVID-19 Symposium Day 1 »
Andrew Beam · Tristan Naumann · Katherine Heller · Elaine Nsoesie -
2019 Poster: Reconciling meta-learning and continual learning with online mixtures of tasks »
Ghassen Jerfel · Erin Grant · Tom Griffiths · Katherine Heller -
2019 Spotlight: Reconciling meta-learning and continual learning with online mixtures of tasks »
Ghassen Jerfel · Erin Grant · Tom Griffiths · Katherine Heller -
2018 : Katherine Heller »
Katherine Heller -
2017 : Panel: On the Foundations and Future of Approximate Inference »
David Blei · Zoubin Ghahramani · Katherine Heller · Tim Salimans · Max Welling · Matthew D. Hoffman -
2017 Poster: An inner-loop free solution to inverse problems using deep neural networks »
Kai Fan · Qi Wei · Lawrence Carin · Katherine Heller -
2015 Poster: Parallelizing MCMC with Random Partition Trees »
Xiangyu Wang · Fangjian Guo · Katherine Heller · David B Dunson -
2015 Poster: Fast Second Order Stochastic Backpropagation for Variational Inference »
Kai Fan · Ziteng Wang · Jeff Beck · James Kwok · Katherine Heller -
2012 Poster: Complex Inference in Neural Circuits with Probabilistic Population Codes and Topic Models »
Jeff Beck · Katherine Heller · Alexandre Pouget -
2012 Spotlight: Complex Inference in Neural Circuits with Probabilistic Population Codes and Topic Models »
Jeff Beck · Katherine Heller · Alexandre Pouget -
2012 Poster: Modelling Reciprocating Relationships with Hawkes processes »
Charles Blundell · Katherine Heller · Jeff Beck -
2012 Session: Oral Session 7 »
Katherine Heller -
2012 Spotlight: Modelling Reciprocating Relationships with Hawkes processes »
Charles Blundell · Katherine Heller · Jeff Beck -
2011 Poster: Testing a Bayesian Measure of Representativeness Using a Large Image Database »
Joshua T Abbott · Katherine Heller · Zoubin Ghahramani · Tom Griffiths -
2011 Session: Oral Session 7 »
Katherine Heller -
2010 Session: Spotlights Session 9 »
Katherine Heller -
2010 Session: Oral Session 11 »
Katherine Heller -
2009 Workshop: Applications for Topic Models: Text and Beyond »
David Blei · Jordan Boyd-Graber · Jonathan Chang · Katherine Heller · Hanna Wallach -
2008 Poster: Bayesian Exponential Family PCA »
Shakir Mohamed · Katherine Heller · Zoubin Ghahramani -
2008 Spotlight: Bayesian Exponential Family PCA »
Shakir Mohamed · Katherine Heller · Zoubin Ghahramani -
2007 Oral: Markov Chain Monte Carlo with People »
Adam Sanborn · Tom Griffiths -
2007 Poster: Markov Chain Monte Carlo with People »
Adam Sanborn · Tom Griffiths