Timezone: »
The concave-convex procedure (CCCP) is a majorization-minimization algorithm that solves d.c. (difference of convex functions) programs as a sequence of convex programs. In machine learning, CCCP is extensively used in many learning algorithms like sparse support vector machines (SVMs), transductive SVMs, sparse principal component analysis, etc. Though widely used in many applications, the convergence behavior of CCCP has not gotten a lot of specific attention. Yuille and Rangarajan analyzed its convergence in their original paper, however, we believe the analysis is not complete. Although the convergence of CCCP can be derived from the convergence of the d.c. algorithm (DCA), their proof is more specialized and technical than actually required for the specific case of CCCP. In this paper, we follow a different reasoning and show how Zangwills global convergence theory of iterative algorithms provides a natural framework to prove the convergence of CCCP, allowing a more elegant and simple proof. This underlines Zangwills theory as a powerful and general framework to deal with the convergence issues of iterative algorithms, after also being used to prove the convergence of algorithms like expectation-maximization, generalized alternating minimization, etc. In this paper, we provide a rigorous analysis of the convergence of CCCP by addressing these questions: (i) When does CCCP find a local minimum or a stationary point of the d.c. program under consideration? (ii) When does the sequence generated by CCCP converge? We also present an open problem on the issue of local convergence of CCCP.
Author Information
Bharath Sriperumbudur (The Pennsylvania State University)
Gert Lanckriet (U.C. San Diego)
More from the Same Authors
-
2015 Poster: Optimal Rates for Random Fourier Features »
Bharath Sriperumbudur · Zoltan Szabo -
2015 Spotlight: Optimal Rates for Random Fourier Features »
Bharath Sriperumbudur · Zoltan Szabo -
2014 Workshop: Modern Nonparametrics 3: Automating the Learning Pipeline »
Eric Xing · Mladen Kolar · Arthur Gretton · Samory Kpotufe · Han Liu · Zoltán Szabó · Alan Yuille · Andrew G Wilson · Ryan Tibshirani · Sasha Rakhlin · Damian Kozbur · Bharath Sriperumbudur · David Lopez-Paz · Kirthevasan Kandasamy · Francesco Orabona · Andreas Damianou · Wacha Bounliphone · Yanshuai Cao · Arijit Das · Yingzhen Yang · Giulia DeSalvo · Dmitry Storcheus · Roberto Valerio -
2014 Poster: Kernel Mean Estimation via Spectral Filtering »
Krikamol Muandet · Bharath Sriperumbudur · Bernhard Schölkopf -
2012 Workshop: Machine Learning Approaches to Mobile Context Awareness »
Katherine Ellis · Gert Lanckriet · Tommi Jaakkola · Lenny Grokop -
2012 Poster: Non-linear Metric Learning »
Dor Kedem · Stephen Tyree · Kilian Q Weinberger · Fei Sha · Gert Lanckriet -
2012 Poster: The variational hierarchical EM algorithm for clustering hidden Markov models. »
Emanuele Coviello · Antoni Chan · Gert Lanckriet -
2012 Poster: Optimal kernel choice for large-scale two-sample tests »
Arthur Gretton · Bharath Sriperumbudur · Dino Sejdinovic · Heiko Strathmann · Sivaraman Balakrishnan · Massimiliano Pontil · Kenji Fukumizu -
2011 Poster: Learning in Hilbert vs. Banach Spaces: A Measure Embedding Viewpoint »
Bharath Sriperumbudur · Kenji Fukumizu · Gert Lanckriet -
2009 Workshop: Understanding Multiple Kernel Learning Methods »
Brian McFee · Gert Lanckriet · Francis Bach · Nati Srebro -
2009 Poster: Kernel Choice and Classifiability for RKHS Embeddings of Probability Distributions »
Bharath Sriperumbudur · Kenji Fukumizu · Arthur Gretton · Gert Lanckriet · Bernhard Schölkopf -
2009 Oral: Kernel Choice and Classifiability for RKHS Embeddings of Probability Distributions »
Bharath Sriperumbudur · Kenji Fukumizu · Arthur Gretton · Gert Lanckriet · Bernhard Schölkopf -
2009 Poster: A Fast, Consistent Kernel Two-Sample Test »
Arthur Gretton · Kenji Fukumizu · Zaid Harchaoui · Bharath Sriperumbudur -
2009 Spotlight: A Fast, Consistent Kernel Two-Sample Test »
Arthur Gretton · Kenji Fukumizu · Zaid Harchaoui · Bharath Sriperumbudur -
2008 Workshop: Kernel Learning: Automatic Selection of Optimal Kernels »
Corinna Cortes · Arthur Gretton · Gert Lanckriet · Mehryar Mohri · Afshin Rostamizadeh -
2008 Poster: Characteristic Kernels on Groups and Semigroups »
Kenji Fukumizu · Bharath Sriperumbudur · Arthur Gretton · Bernhard Schölkopf -
2008 Oral: Characteristic Kernels on Groups and Semigroups »
Kenji Fukumizu · Bharath Sriperumbudur · Arthur Gretton · Bernhard Schölkopf