Timezone: »
Poster
Which graphical models are difficult to learn?
Andrea Montanari · José Bento
We consider the problem of learning the structure of Ising models (pairwise binary Markov random fields) from i.i.d. samples. While several methods have been proposed to accomplish this task, their relative merits and limitations remain somewhat obscure. By analyzing a number of concrete examples, we show that low-complexity algorithms systematically fail when the Markov random field develops long-range correlations. More precisely, this phenomenon appears to be related to the Ising model phase transition (although it does not coincide with it).
Author Information
Andrea Montanari (Stanford)
José Bento (Boston College)
More from the Same Authors
-
2021 Poster: Streaming Belief Propagation for Community Detection »
Yuchen Wu · Jakab Tardos · Mohammadhossein Bateni · André Linhares · Filipe Miguel Goncalves de Almeida · Andrea Montanari · Ashkan Norouzi-Fard -
2020 Poster: When Do Neural Networks Outperform Kernel Methods? »
Behrooz Ghorbani · Song Mei · Theodor Misiakiewicz · Andrea Montanari -
2019 Poster: Limitations of Lazy Training of Two-layers Neural Network »
Behrooz Ghorbani · Song Mei · Theodor Misiakiewicz · Andrea Montanari -
2019 Spotlight: Limitations of Lazy Training of Two-layers Neural Network »
Behrooz Ghorbani · Song Mei · Theodor Misiakiewicz · Andrea Montanari -
2018 Poster: Efficient Projection onto the Perfect Phylogeny Model »
Bei Jia · Surjyendu Ray · Sam Safavi · José Bento -
2018 Poster: Contextual Stochastic Block Models »
Yash Deshpande · Subhabrata Sen · Andrea Montanari · Elchanan Mossel -
2018 Spotlight: Contextual Stochastic Block Models »
Yash Deshpande · Subhabrata Sen · Andrea Montanari · Elchanan Mossel -
2017 Poster: Inference in Graphical Models via Semidefinite Programming Hierarchies »
Murat Erdogdu · Yash Deshpande · Andrea Montanari -
2015 : Information-theoretic bounds on learning network dynamics »
Andrea Montanari -
2015 : Learning Stochastic Differential Equations »
José Bento -
2015 Poster: Convergence rates of sub-sampled Newton methods »
Murat Erdogdu · Andrea Montanari -
2015 Poster: On the Limitation of Spectral Methods: From the Gaussian Hidden Clique Problem to Rank-One Perturbations of Gaussian Tensors »
Andrea Montanari · Daniel Reichman · Ofer Zeitouni -
2014 Poster: A statistical model for tensor PCA »
Emile Richard · Andrea Montanari -
2014 Poster: Cone-Constrained Principal Component Analysis »
Yash Deshpande · Andrea Montanari · Emile Richard -
2014 Poster: Shape and Illumination from Shading using the Generic Viewpoint Assumption »
Daniel Zoran · Dilip Krishnan · José Bento · Bill Freeman -
2014 Poster: Sparse PCA via Covariance Thresholding »
Yash Deshpande · Andrea Montanari -
2013 Demonstration: The Three-Weight Algorithm: Enhancing ADMM for Large-Scale Distributed Optimization »
Nate Derbinsky · José Bento · Jonathan S Yedidia -
2013 Poster: A message-passing algorithm for multi-agent trajectory planning »
José Bento · Nate Derbinsky · Javier Alonso-Mora · Jonathan S Yedidia -
2013 Poster: Estimating LASSO Risk and Noise Level »
Mohsen Bayati · Murat Erdogdu · Andrea Montanari -
2013 Poster: Confidence Intervals and Hypothesis Testing for High-Dimensional Statistical Models »
Adel Javanmard · Andrea Montanari -
2013 Poster: Model Selection for High-Dimensional Regression under the Generalized Irrepresentability Condition »
Adel Javanmard · Andrea Montanari -
2010 Poster: Learning Networks of Stochastic Differential Equations »
José Bento · Morteza Ibrahimi · Andrea Montanari -
2010 Poster: The LASSO risk: asymptotic results and real world examples »
Mohsen Bayati · José Bento · Andrea Montanari -
2009 Poster: Matrix Completion from Noisy Entries »
Raghunandan Keshavan · Andrea Montanari · Sewoong Oh