Timezone: »
The principles by which spiking neurons contribute to the astounding computational power of generic cortical microcircuits, and how spike-timing-dependent plasticity (STDP) of synaptic weights could generate and maintain this computational function, are unknown. We show here that STDP, in conjunction with a stochastic soft winner-take-all (WTA) circuit, induces spiking neurons to generate through their synaptic weights implicit internal models for subclasses (or "causes") of the high-dimensional spike patterns of hundreds of pre-synaptic neurons. Hence these neurons will fire after learning whenever the current input best matches their internal model. The resulting computational function of soft WTA circuits, a common network motif of cortical microcircuits, could therefore be a drastic dimensionality reduction of information streams, together with the autonomous creation of internal models for the probability distributions of their input patterns. We show that the autonomous generation and maintenance of this computational function can be explained on the basis of rigorous mathematical principles. In particular, we show that STDP is able to approximate a stochastic online Expectation-Maximization (EM) algorithm for modeling the input data. A corresponding result is shown for Hebbian learning in artificial neural networks.
Author Information
Bernhard Nessler (TU-Graz)
Michael Pfeiffer
Wolfgang Maass (Graz University of Technology - IGI)
Related Events (a corresponding poster, oral, or spotlight)
-
2009 Spotlight: STDP enables spiking neurons to detect hidden causes of their inputs »
Wed. Dec 9th 01:16 -- 01:17 AM Room
More from the Same Authors
-
2019 : Poster Session »
Pravish Sainath · Mohamed Akrout · Charles Delahunt · Nathan Kutz · Guangyu Robert Yang · Joseph Marino · L F Abbott · Nicolas Vecoven · Damien Ernst · andrew warrington · Michael Kagan · Kyunghyun Cho · Kameron Harris · Leopold Grinberg · John J. Hopfield · Dmitry Krotov · Taliah Muhammad · Erick Cobos · Edgar Walker · Jacob Reimer · Andreas Tolias · Alexander Ecker · Janaki Sheth · Yu Zhang · Maciej Wołczyk · Jacek Tabor · Szymon Maszke · Roman Pogodin · Dane Corneil · Wulfram Gerstner · Baihan Lin · Guillermo Cecchi · Jenna M Reinen · Irina Rish · Guillaume Bellec · Darjan Salaj · Anand Subramoney · Wolfgang Maass · Yueqi Wang · Ari Pakman · Jin Hyung Lee · Liam Paninski · Bryan Tripp · Colin Graber · Alex Schwing · Luke Prince · Gabriel Ocker · Michael Buice · Benjamin Lansdell · Konrad Kording · Jack Lindsey · Terrence Sejnowski · Matthew Farrell · Eric Shea-Brown · Nicolas Farrugia · Victor Nepveu · Jiwoong Im · Kristin Branson · Brian Hu · Ramakrishnan Iyer · Stefan Mihalas · Sneha Aenugu · Hananel Hazan · Sihui Dai · Tan Nguyen · Doris Tsao · Richard Baraniuk · Anima Anandkumar · Hidenori Tanaka · Aran Nayebi · Stephen Baccus · Surya Ganguli · Dean Pospisil · Eilif Muller · Jeffrey S Cheng · Gaël Varoquaux · Kamalaker Dadi · Dimitrios C Gklezakos · Rajesh PN Rao · Anand Louis · Christos Papadimitriou · Santosh Vempala · Naganand Yadati · Daniel Zdeblick · Daniela M Witten · Nicholas Roberts · Vinay Prabhu · Pierre Bellec · Poornima Ramesh · Jakob H Macke · Santiago Cadena · Guillaume Bellec · Franz Scherr · Owen Marschall · Robert Kim · Hannes Rapp · Marcio Fonseca · Oliver Armitage · Jiwoong Im · Thomas Hardcastle · Abhishek Sharma · Wyeth Bair · Adrian Valente · Shane Shang · Merav Stern · Rutuja Patil · Peter Wang · Sruthi Gorantla · Peter Stratton · Tristan Edwards · Jialin Lu · Martin Ester · Yurii Vlasov · Siavash Golkar -
2019 : Contributed Talk #2: Slow processes of neurons enable a biologically plausible approximation to policy gradient »
Wolfgang Maass -
2019 : Coffee Break & Poster Session »
Samia Mohinta · Andrea Agostinelli · Alexandra Moringen · Jee Hang Lee · Yat Long Lo · Wolfgang Maass · Blue Sheffer · Colin Bredenberg · Benjamin Eysenbach · Liyu Xia · Efstratios Markou · Jan Lichtenberg · Pierre Richemond · Tony Zhang · JB Lanier · Baihan Lin · William Fedus · Glen Berseth · Marta Sarrico · Matthew Crosby · Stephen McAleer · Sina Ghiassian · Franz Scherr · Guillaume Bellec · Darjan Salaj · Arinbjörn Kolbeinsson · Matthew Rosenberg · Jaehoon Shin · Sang Wan Lee · Guillermo Cecchi · Irina Rish · Elias Hajek -
2018 Poster: Smoothed Analysis of Discrete Tensor Decomposition and Assemblies of Neurons »
Nima Anari · Constantinos Daskalakis · Wolfgang Maass · Christos Papadimitriou · Amin Saberi · Santosh Vempala -
2018 Poster: Long short-term memory and Learning-to-learn in networks of spiking neurons »
Guillaume Bellec · Darjan Salaj · Anand Subramoney · Robert Legenstein · Wolfgang Maass -
2016 : Reward-based self-configuration of networks of spiking neurons »
Wolfgang Maass -
2015 Poster: Synaptic Sampling: A Bayesian Approach to Neural Network Plasticity and Rewiring »
David Kappel · Stefan Habenschuss · Robert Legenstein · Wolfgang Maass -
2012 Poster: Homeostatic plasticity in Bayesian spiking networks as Expectation Maximization with posterior constraints »
Stefan Habenschuss · Johannes Bill · Bernhard Nessler -
2009 Poster: Functional network reorganization in motor cortex can be explained by reward-modulated Hebbian learning »
Robert Legenstein · Steven Chase · Andrew B Schwartz · Wolfgang Maass -
2009 Oral: Functional Network Reorganization In Motor Cortex Can Be Explained by Reward-Modulated Hebbian Learning »
Robert Legenstein · Steven Chase · Andrew B Schwartz · Wolfgang Maass -
2009 Poster: Replacing supervised classification learning by Slow Feature Analysis in spiking neural networks »
Stefan Klampfl · Wolfgang Maass -
2009 Spotlight: Replacing supervised classification learning by Slow Feature Analysis in spiking neural networks »
Stefan Klampfl · Wolfgang Maass -
2008 Poster: Hebbian Learning of Bayes Optimal Decisions »
Bernhard Nessler · Michael Pfeiffer · Wolfgang Maass -
2007 Spotlight: Theoretical Analysis of Learning with Reward-Modulated Spike-Timing-Dependent Plasticity »
Robert Legenstein · Dejan Pecevski · Wolfgang Maass -
2007 Poster: Theoretical Analysis of Learning with Reward-Modulated Spike-Timing-Dependent Plasticity »
Robert Legenstein · Dejan Pecevski · Wolfgang Maass -
2007 Poster: Simplified Rules and Theoretical Analysis for Information Bottleneck Optimization and PCA with Spiking Neurons »
Lars Buesing · Wolfgang Maass -
2006 Workshop: Echo State Networks and Liquid State Machines »
Herbert Jaeger · Wolfgang Maass · Jose C Principe -
2006 Poster: Temporal dynamics of information content carried by neurons in the primary visual cortex »
Danko Nikolic · Stefan Haeusler · Wolf Singer · Wolfgang Maass -
2006 Poster: Information Bottleneck Optimization and Independent Component Extraction with Spiking Neurons »
Stefan Klampfl · Robert Legenstein · Wolfgang Maass