Timezone: »
This paper introduces a new method for semi-supervised learning on high dimensional nonlinear manifolds, which includes a phase of unsupervised basis learning and a phase of supervised function learning. The learned bases provide a set of anchor points to form a local coordinate system, such that each data point x on the manifold can be locally approximated by a linear combination of its nearby anchor points, and the linear weights become its local coordinate coding. We show that a high dimensional nonlinear function can be approximated by a global linear function with respect to this coding scheme, and the approximation quality is ensured by the locality of such coding. The method turns a difficult nonlinear learning problem into a simple global linear learning problem, which overcomes some drawbacks of traditional local learning methods.
Author Information
Kai Yu (Baidu)
Tong Zhang (Tencent)
Yihong Gong
More from the Same Authors
-
2016 Poster: Exact Recovery of Hard Thresholding Pursuit »
Xiaotong Yuan · Ping Li · Tong Zhang -
2016 Poster: Learning Additive Exponential Family Graphical Models via $\ell_{2,1}$-norm Regularized M-Estimation »
Xiaotong Yuan · Ping Li · Tong Zhang · Qingshan Liu · Guangcan Liu -
2015 Poster: Quartz: Randomized Dual Coordinate Ascent with Arbitrary Sampling »
Zheng Qu · Peter Richtarik · Tong Zhang -
2015 Poster: Local Smoothness in Variance Reduced Optimization »
Daniel Vainsencher · Han Liu · Tong Zhang -
2015 Poster: Semi-supervised Convolutional Neural Networks for Text Categorization via Region Embedding »
Rie Johnson · Tong Zhang -
2015 Spotlight: Semi-supervised Convolutional Neural Networks for Text Categorization via Region Embedding »
Rie Johnson · Tong Zhang -
2014 Poster: Communication Efficient Distributed Machine Learning with the Parameter Server »
Mu Li · David G Andersen · Alexander Smola · Kai Yu -
2013 Demonstration: Demos of Deep Learning Technologies at Baidu IDL »
Yi Yang · Kai Yu -
2013 Poster: Accelerating Stochastic Gradient Descent using Predictive Variance Reduction »
Rie Johnson · Tong Zhang -
2013 Poster: Accelerated Mini-Batch Stochastic Dual Coordinate Ascent »
Shai Shalev-Shwartz · Tong Zhang -
2012 Workshop: Modern Nonparametric Methods in Machine Learning »
Sivaraman Balakrishnan · Arthur Gretton · Mladen Kolar · John Lafferty · Han Liu · Tong Zhang -
2012 Poster: Selective Labeling via Error Bound Minimization »
Quanquan Gu · Tong Zhang · Chris Ding · Jiawei Han -
2012 Poster: Deep Learning of invariant features via tracked video sequences »
Will Y Zou · Andrew Y Ng · Shenghuo Zhu · Kai Yu -
2011 Poster: Learning to Search Efficiently in High Dimensions »
Zhen Li · Huazhong Ning · Liangliang Cao · Tong Zhang · Yihong Gong · Thomas S Huang -
2011 Poster: Spectral Methods for Learning Multivariate Latent Tree Structure »
Anima Anandkumar · Kamalika Chaudhuri · Daniel Hsu · Sham M Kakade · Le Song · Tong Zhang -
2011 Poster: Greedy Model Averaging »
Dong Dai · Tong Zhang -
2010 Poster: Deep Coding Network »
Yuanqing Lin · Tong Zhang · Shenghuo Zhu · Kai Yu -
2010 Poster: Agnostic Active Learning Without Constraints »
Alina Beygelzimer · Daniel Hsu · John Langford · Tong Zhang -
2009 Poster: Multi-Label Prediction via Compressed Sensing »
Daniel Hsu · Sham M Kakade · John Langford · Tong Zhang -
2009 Oral: Multi-Label Prediction via Compressed Sensing »
Daniel Hsu · Sham M Kakade · John Langford · Tong Zhang -
2008 Poster: Stochastic Relational Models for Large-scale Dyadic Data using MCMC »
Shenghuo Zhu · Kai Yu · Yihong Gong -
2008 Poster: Adaptive Forward-Backward Greedy Algorithm for Sparse Learning with Linear Models »
Tong Zhang -
2008 Oral: Adaptive Forward-Backward Greedy Algorithm for Sparse Learning with Linear Models »
Tong Zhang -
2008 Spotlight: Stochastic Relational Models for Large-scale Dyadic Data using MCMC »
Shenghuo Zhu · Kai Yu · Yihong Gong -
2008 Poster: Sparse Online Learning via Truncated Gradient »
John Langford · Lihong Li · Tong Zhang -
2008 Spotlight: Sparse Online Learning via Truncated Gradient »
John Langford · Lihong Li · Tong Zhang -
2008 Poster: Deep Learning with Kernel Regularization for Visual Recognition »
Kai Yu · Wei Xu · Yihong Gong -
2008 Poster: Multi-stage Convex Relaxation for Learning with Sparse Regularization »
Tong Zhang -
2008 Spotlight: Deep Learning with Kernel Regularization for Visual Recognition »
Kai Yu · Wei Xu · Yihong Gong -
2007 Poster: A General Boosting Method and its Application to Learning Ranking Functions for Web Search »
Zhaohui Zheng · Hongyuan Zha · Tong Zhang · Olivier Chapelle · Keke Chen · Gordon Sun -
2007 Poster: Gaussian Process Models for Link Analysis and Transfer Learning »
Kai Yu · Wei Chu -
2007 Poster: Predictive Matrix-Variate t Models »
Shenghuo Zhu · Kai Yu · Yihong Gong -
2007 Demonstration: Gender and Age Recognition »
Wei Xu · Kai Yu · Yihong Gong -
2007 Poster: The Epoch-Greedy Algorithm for Multi-armed Bandits with Side Information »
John Langford · Tong Zhang -
2006 Poster: Gaussian Process Models for Discriminative Link Prediction »
Kai Yu · Wei Chu · Shipeng Yu · Volker Tresp · Zhao Xu -
2006 Poster: Learning on Graph with Laplacian Regularization »
Rie Ando · Tong Zhang