Timezone: »
We develop a probabilistic model of human memory performance in free recall experiments. In these experiments, a subject first studies a list of words and then tries to recall them. To model these data, we draw on both previous psychological research and statistical topic models of text documents. We assume that memories are formed by assimilating the semantic meaning of studied words (represented as a distribution over topics) into a slowly changing latent context (represented in the same space). During recall, this context is reinstated and used as a cue for retrieving studied words. By conceptualizing memory retrieval as a dynamic latent variable model, we are able to use Bayesian inference to represent uncertainty and reason about the cognitive processes underlying memory. We present a particle filter algorithm for performing approximate posterior inference, and evaluate our model on the prediction of recalled words in experimental data. By specifying the model hierarchically, we are also able to capture inter-subject variability.
Author Information
Richard Socher (MetaMind)
Samuel J Gershman (Harvard University)
Adler Perotte
Per Sederberg (Princeton University)
David Blei (Columbia University)
Kenneth Norman
More from the Same Authors
-
2021 : CCNLab: A Benchmarking Framework for Computational Cognitive Neuroscience »
Nikhil Bhattasali · Momchil Tomov · Samuel J Gershman -
2022 : Closing Remarks »
Samuel J Gershman -
2022 Workshop: Information-Theoretic Principles in Cognitive Systems »
Noga Zaslavsky · Mycal Tucker · Sarah Marzen · Irina Higgins · Stephanie Palmer · Samuel J Gershman -
2022 : Panel Discussion: Opportunities and Challenges »
Kenneth Norman · Janice Chen · Samuel J Gershman · Albert Gu · Sepp Hochreiter · Ida Momennejad · Hava Siegelmann · Sainbayar Sukhbaatar -
2022 Workshop: Memory in Artificial and Real Intelligence (MemARI) »
Mariya Toneva · Javier Turek · Vy Vo · Shailee Jain · Kenneth Norman · Alexander Huth · Uri Hasson · Mihai Capotă -
2022 Poster: How Well Do Unsupervised Learning Algorithms Model Human Real-time and Life-long Learning? »
Chengxu Zhuang · Ziyu Xiang · Yoon Bai · Xiaoxuan Jia · Nicholas Turk-Browne · Kenneth Norman · James J DiCarlo · Dan Yamins -
2021 Poster: Evaluating State-of-the-Art Classification Models Against Bayes Optimality »
Ryan Theisen · Huan Wang · Lav Varshney · Caiming Xiong · Richard Socher -
2020 : Contributed Talk - ProGen: Language Modeling for Protein Generation »
Ali Madani · Bryan McCann · Nikhil Naik · · Possu Huang · Richard Socher -
2018 Poster: Human-in-the-Loop Interpretability Prior »
Isaac Lage · Andrew Ross · Samuel J Gershman · Been Kim · Finale Doshi-Velez -
2018 Spotlight: Human-in-the-Loop Interpretability Prior »
Isaac Lage · Andrew Ross · Samuel J Gershman · Been Kim · Finale Doshi-Velez -
2017 Poster: Learned in Translation: Contextualized Word Vectors »
Bryan McCann · James Bradbury · Caiming Xiong · Richard Socher -
2016 : Richard Socher - Tackling the Limits of Deep Learning for NLP »
Richard Socher -
2016 Poster: Probing the Compositionality of Intuitive Functions »
Eric Schulz · Josh Tenenbaum · David Duvenaud · Maarten Speekenbrink · Samuel J Gershman -
2015 Workshop: Bounded Optimality and Rational Metareasoning »
Samuel J Gershman · Falk Lieder · Tom Griffiths · Noah Goodman -
2014 Workshop: Advances in Variational Inference »
David Blei · Shakir Mohamed · Michael Jordan · Charles Blundell · Tamara Broderick · Matthew D. Hoffman -
2014 Poster: A Filtering Approach to Stochastic Variational Inference »
Neil Houlsby · David Blei -
2014 Poster: Smoothed Gradients for Stochastic Variational Inference »
Stephan Mandt · David Blei -
2014 Poster: Design Principles of the Hippocampal Cognitive Map »
Kimberly Stachenfeld · Matthew Botvinick · Samuel J Gershman -
2014 Poster: Content-based recommendations with Poisson factorization »
Prem Gopalan · Laurent Charlin · David Blei -
2014 Spotlight: Design Principles of the Hippocampal Cognitive Map »
Kimberly Stachenfeld · Matthew Botvinick · Samuel J Gershman -
2014 Poster: Global Belief Recursive Neural Networks »
Romain Paulus · Richard Socher · Christopher Manning -
2013 Workshop: Topic Models: Computation, Application, and Evaluation »
David Mimno · Amr Ahmed · Jordan Boyd-Graber · Ankur Moitra · Hanna Wallach · Alexander Smola · David Blei · Anima Anandkumar -
2013 Workshop: Probabilistic Models for Big Data »
Neil D Lawrence · Joaquin Quiñonero-Candela · Tianshi Gao · James Hensman · Zoubin Ghahramani · Max Welling · David Blei · Ralf Herbrich -
2013 Demonstration: Easy Text Classification with Machine Learning »
Richard Socher · Romain Paulus · Bryan McCann · Andrew Y Ng -
2013 Poster: Reasoning With Neural Tensor Networks for Knowledge Base Completion »
Richard Socher · Danqi Chen · Christopher D Manning · Andrew Y Ng -
2013 Poster: Zero-Shot Learning Through Cross-Modal Transfer »
Richard Socher · Milind Ganjoo · Christopher D Manning · Andrew Y Ng -
2013 Poster: Efficient Online Inference for Bayesian Nonparametric Relational Models »
Dae Il Kim · Prem Gopalan · David Blei · Erik Sudderth -
2013 Poster: Modeling Overlapping Communities with Node Popularities »
Prem Gopalan · Chong Wang · David Blei -
2012 Poster: Recursive Deep Learning on 3D Point Clouds »
Richard Socher · Bharath Bath · Brody Huval · Christopher D Manning · Andrew Y Ng -
2012 Poster: Truncation-free Online Variational Inference for Bayesian Nonparametric Models »
Chong Wang · David Blei -
2012 Poster: Scalable Inference of Overlapping Communities »
Prem Gopalan · David Mimno · Sean Gerrish · Michael Freedman · David Blei -
2012 Spotlight: Scalable Inference of Overlapping Communities »
Prem Gopalan · David Mimno · Sean Gerrish · Michael Freedman · David Blei -
2012 Poster: How They Vote: Issue-Adjusted Models of Legislative Behavior »
Sean Gerrish · David Blei -
2011 Poster: Unfolding Recursive Autoencoders for Paraphrase Detection »
Richard Socher · Eric H Huang · Jeffrey Pennin · Andrew Y Ng · Christopher D Manning -
2011 Poster: Spatial distance dependent Chinese Restaurant Process for image segmentation »
Soumya Ghosh · Andrei B Ungureanu · Erik Sudderth · David Blei -
2010 Session: Oral Session 18 »
David Blei -
2010 Spotlight: Online Learning for Latent Dirichlet Allocation »
Matthew D. Hoffman · David Blei · Francis Bach -
2010 Poster: Online Learning for Latent Dirichlet Allocation »
Matthew D. Hoffman · David Blei · Francis Bach -
2010 Poster: Nonparametric Density Estimation for Stochastic Optimization with an Observable State Variable »
Lauren A Hannah · Warren B Powell · David Blei -
2010 Poster: The Neural Costs of Optimal Control »
Samuel J Gershman · Robert C Wilson -
2009 Workshop: Applications for Topic Models: Text and Beyond »
David Blei · Jordan Boyd-Graber · Jonathan Chang · Katherine Heller · Hanna Wallach -
2009 Poster: Reading Tea Leaves: How Humans Interpret Topic Models »
Jonathan Chang · Jordan Boyd-Graber · Sean Gerrish · Chong Wang · David Blei -
2009 Poster: Perceptual Multistability as Markov Chain Monte Carlo Inference »
Samuel J Gershman · Edward Vul · Josh Tenenbaum -
2009 Spotlight: Perceptual Multistability as Markov Chain Monte Carlo Inference »
Samuel J Gershman · Edward Vul · Josh Tenenbaum -
2009 Oral: Reading Tea Leaves: How Humans Interpret Topic Models »
Jonathan Chang · Jordan Boyd-Graber · Sean Gerrish · Chong Wang · David Blei -
2009 Poster: Decoupling Sparsity and Smoothness in the Discrete Hierarchical Dirichlet Process »
Chong Wang · David Blei -
2009 Spotlight: Decoupling Sparsity and Smoothness in the Discrete Hierarchical Dirichlet Process »
Chong Wang · David Blei -
2009 Poster: Variational Inference for the Nested Chinese Restaurant Process »
Chong Wang · David Blei -
2008 Workshop: Analyzing Graphs: Theory and Applications »
Edo M Airoldi · David Blei · Jake M Hofman · Tony Jebara · Eric Xing -
2008 Poster: Mixed Membership Stochastic Blockmodels »
Edo M Airoldi · David Blei · Stephen E Fienberg · Eric Xing -
2008 Spotlight: Mixed Membership Stochastic Blockmodels »
Edo M Airoldi · David Blei · Stephen E Fienberg · Eric Xing -
2008 Poster: Syntactic Topic Models »
Jordan Boyd-Graber · David Blei -
2008 Poster: Relative Performance Guarantees for Approximate Inference in Latent Dirichlet Allocation »
Indraneel Mukherjee · David Blei -
2008 Spotlight: Syntactic Topic Models »
Jordan Boyd-Graber · David Blei -
2008 Spotlight: Relative Performance Guarantees for Approximate Inference in Latent Dirichlet Allocation »
Indraneel Mukherjee · David Blei -
2007 Poster: Supervised Topic Models »
David Blei · Jon McAuliffe