Timezone: »
We demonstrate the IID, a natively probabilistic, reconfigurable digital computer based on stochastic digital circuits. The IID Mark 0 is implemented on top of a commodity array of Field Programmable Gate Arrays (FPGAs), and programmed using a generic toolchain based on the State-Density-Kernel abstractions from Blaise. It can be used to perform MCMC inference on factor graphs with hundreds of thousands of variables in real time. The technical novelty of the IID rests in the stochastic digital circuits which it simulates. These circuits enable the construction of massively parallel, low bit precision, fault tolerant machines that directly simulate Markov chains in hardware, leveraging small XOR-SHIFT RNGs to provide the necessary stochasticity. Due to space constraints, we refer the reader to FIXME cite for technical details about these circuits, including a detailed discussion of their capabilities and their novelty and an overview of the software tools used to program the IID to solve arbitrary discrete factor graphs. The key consequence of our approach is that the IID can be used to solve probabilistic graphical model problems with 2-3 orders of magnitude improvement in price/power/performance product and 3-6 orders of magnitude improvements in robustness to bit errors than is possible using conventional computer architectures.
Author Information
Vikash Mansinghka (Massachusetts Institute of Technology)
Vikash Mansinghka is a research scientist at MIT, where he leads the Probabilistic Computing Project. Vikash holds S.B. degrees in Mathematics and in Computer Science from MIT, as well as an M.Eng. in Computer Science and a PhD in Computation. He also held graduate fellowships from the National Science Foundation and MIT’s Lincoln Laboratory. His PhD dissertation on natively probabilistic computation won the MIT George M. Sprowls dissertation award in computer science, and his research on the Picture probabilistic programming language won an award at CVPR. He served on DARPA’s Information Science and Technology advisory board from 2010-2012, and currently serves on the editorial boards for the Journal of Machine Learning Research and the journal Statistics and Computation. He was an advisor to Google DeepMind and has co-founded two AI-related startups, one acquired and one currently operational.
More from the Same Authors
-
2021 : Towards Denotational Semantics of AD for Higher-Order, Recursive, Probabilistic Languages »
Alexander Lew · Mathieu Huot · Vikash Mansinghka -
2021 Poster: 3DP3: 3D Scene Perception via Probabilistic Programming »
Nishad Gothoskar · Marco Cusumano-Towner · Ben Zinberg · Matin Ghavamizadeh · Falk Pollok · Austin Garrett · Josh Tenenbaum · Dan Gutfreund · Vikash Mansinghka -
2020 Poster: Online Bayesian Goal Inference for Boundedly Rational Planning Agents »
Tan Zhi-Xuan · Jordyn Mann · Tom Silver · Josh Tenenbaum · Vikash Mansinghka -
2019 : Posters »
Colin Graber · Yuan-Ting Hu · Tiantian Fang · Jessica Hamrick · Giorgio Giannone · John Co-Reyes · Boyang Deng · Eric Crawford · Andrea Dittadi · Peter Karkus · Matthew Dirks · Rakshit Trivedi · Sunny Raj · Javier Felip Leon · Harris Chan · Jan Chorowski · Jeff Orchard · Aleksandar Stanić · Adam Kortylewski · Ben Zinberg · Chenghui Zhou · Wei Sun · Vikash Mansinghka · Chun-Liang Li · Marco Cusumano-Towner -
2017 Poster: AIDE: An algorithm for measuring the accuracy of probabilistic inference algorithms »
Marco Cusumano-Towner · Vikash Mansinghka -
2017 Tutorial: Engineering and Reverse-Engineering Intelligence Using Probabilistic Programs, Program Induction, and Deep Learning »
Josh Tenenbaum · Vikash Mansinghka -
2016 Poster: A Probabilistic Programming Approach To Probabilistic Data Analysis »
Feras Saad · Vikash Mansinghka -
2014 Workshop: 3rd NIPS Workshop on Probabilistic Programming »
Daniel Roy · Josh Tenenbaum · Thomas Dietterich · Stuart J Russell · YI WU · Ulrik R Beierholm · Alp Kucukelbir · Zenna Tavares · Yura Perov · Daniel Lee · Brian Ruttenberg · Sameer Singh · Michael Hughes · Marco Gaboardi · Alexey Radul · Vikash Mansinghka · Frank Wood · Sebastian Riedel · Prakash Panangaden -
2013 Poster: Approximate Bayesian Image Interpretation using Generative Probabilistic Graphics Programs »
Vikash Mansinghka · Tejas D Kulkarni · Yura N Perov · Josh Tenenbaum -
2013 Oral: Approximate Bayesian Image Interpretation using Generative Probabilistic Graphics Programs »
Vikash Mansinghka · Tejas D Kulkarni · Yura N Perov · Josh Tenenbaum -
2012 Workshop: Probabilistic Programming: Foundations and Applications (2 day) »
Vikash Mansinghka · Daniel Roy · Noah Goodman -
2012 Workshop: Probabilistic Programming: Foundations and Applications (2 day) »
Vikash Mansinghka · Daniel Roy · Noah Goodman -
2009 Demonstration: Monte: An Interactive Ssytem for Massively Parallel Probabilistic Programming »
Vikash Mansinghka -
2008 Workshop: Probabilistic Programming: Universal Languages, Systems and Applications »
Daniel Roy · John Winn · David A McAllester · Vikash Mansinghka · Josh Tenenbaum -
2006 Poster: Learning annotated hierarchies from relational data »
Daniel Roy · Charles Kemp · Vikash Mansinghka · Josh Tenenbaum -
2006 Talk: Learning annotated hierarchies from relational data »
Daniel Roy · Charles Kemp · Vikash Mansinghka · Josh Tenenbaum -
2006 Demonstration: Blaise: A System for Interactive Development of High Performance Inference Algorithms »
Keith Bonawitz · Vikash Mansinghka