Timezone: »
As the amount and complexity of available information grows, it becomes clear that traditional data analysis methods are insufficient. In particular, the data analysis process becomes inherently iterative and interactive: i) users start analysis with a vague modeling assumption (expressed often as a form of domain knowledge) about the data; ii) data are analyzed and the intermediate results are visually presented to the users; iii) users revise modeling assumptions and the process iterates. This process has emerged as a prominent framework in many data analysis application areas including business, homeland security, and health care. This framework, known succinctly as visual analytics, combines visualization, human computer interaction, and statistical data analysis in order to derive insight from massive high dimensional data.
Many statistical learning techniques, for instance, dimensionality reduction for information visualization and navigation, are fundamental tools in visual analytics. Addressing new challenges -- being iterative and interactive -- has potential to go beyond the limits of traditional techniques. However, to realize its potential, there is a need to develop new theory and methodology that bridges visualization, interaction, and statistical learning.
The purpose of this workshop is to expose the NIPS audience to this new and exciting interdisciplinary area and to foster the creation of a new specialization within the machine learning community: machine learning for visual analytics.
Author Information
Guy Lebanon (Amazon)
Fei Sha (University of Southern California (USC))
More from the Same Authors
-
2020 Session: Orals & Spotlights Track 01: Representation/Relational »
Laurens van der Maaten · Fei Sha -
2018 Poster: Synthesize Policies for Transfer and Adaptation across Tasks and Environments »
Hexiang Hu · Liyu Chen · Boqing Gong · Fei Sha -
2018 Spotlight: Synthesize Policies for Transfer and Adaptation across Tasks and Environments »
Hexiang Hu · Liyu Chen · Boqing Gong · Fei Sha -
2017 Workshop: Optimal Transport and Machine Learning »
Olivier Bousquet · Marco Cuturi · Gabriel Peyré · Fei Sha · Justin Solomon -
2017 Poster: An Empirical Study on The Properties of Random Bases for Kernel Methods »
Maximilian Alber · Pieter-Jan Kindermans · Kristof Schütt · Klaus-Robert Müller · Fei Sha -
2015 : Do Shallow Kernel Methods Match Deep Neural Networks »
Fei Sha -
2015 : Do Shallow Kernel Methods Match Deep Neural Networks? »
Fei Sha -
2014 Poster: Diverse Sequential Subset Selection for Supervised Video Summarization »
Boqing Gong · Wei-Lun Chao · Kristen Grauman · Fei Sha -
2013 Workshop: New Directions in Transfer and Multi-Task: Learning Across Domains and Tasks »
Urun Dogan · Marius Kloft · Tatiana Tommasi · Francesco Orabona · Massimiliano Pontil · Sinno Jialin Pan · Shai Ben-David · Arthur Gretton · Fei Sha · Marco Signoretto · Rajhans Samdani · Yun-Qian Miao · Mohammad Gheshlaghi azar · Ruth Urner · Christoph Lampert · Jonathan How -
2013 Poster: Reshaping Visual Datasets for Domain Adaptation »
Boqing Gong · Kristen Grauman · Fei Sha -
2013 Poster: Similarity Component Analysis »
Soravit Changpinyo · Kuan Liu · Fei Sha -
2012 Poster: Non-linear Metric Learning »
Dor Kedem · Stephen Tyree · Kilian Q Weinberger · Fei Sha · Gert Lanckriet -
2012 Poster: Automatic Feature Induction for Stagewise Collaborative Filtering »
Joonseok Lee · Mingxuan Sun · Seungyeon Kim · Guy Lebanon -
2012 Session: Oral Session 5 »
Fei Sha -
2012 Poster: Semantic Kernel Forests from Multiple Taxonomies »
Sung Ju Hwang · Kristen Grauman · Fei Sha -
2011 Poster: Learning a Tree of Metrics with Disjoint Visual Features »
Sung Ju Hwang · Kristen Grauman · Fei Sha -
2010 Workshop: Challenges of Data Visualization »
Barbara Hammer · Laurens van der Maaten · Fei Sha · Alexander Smola -
2010 Poster: Unsupervised Kernel Dimension Reduction »
Meihong Wang · Fei Sha · Michael Jordan -
2009 Workshop: Learning with Orderings »
Tiberio Caetano · Carlos Guestrin · Jonathan Huang · Risi Kondor · Guy Lebanon · Marina Meila -
2008 Workshop: Algebraic and combinatorial methods in machine learning »
Risi Kondor · Guy Lebanon · Jason Morton -
2008 Mini Symposium: Algebraic methods in machine learning »
Risi Kondor · Guy Lebanon · Jason Morton -
2008 Poster: DiscLDA: Discriminative Learning for Dimensionality Reduction and Classification »
Simon Lacoste-Julien · Fei Sha · Michael Jordan -
2008 Session: Oral session 1: Clustering »
Fei Sha -
2007 Workshop: Machine Learning for Systems Problems (Part 2) »
Archana Ganapathi · Sumit Basu · Fei Sha · Emre Kiciman -
2007 Workshop: Machine Learning for Systems Problems (Part 1) »
Archana Ganapathi · Sumit Basu · Fei Sha · Emre Kiciman -
2007 Session: Session 7: Systems and Applications »
Fei Sha -
2007 Oral: Non-parametric Modeling of Partially Ranked Data »
Guy Lebanon · Yi Mao -
2007 Poster: Non-parametric Modeling of Partially Ranked Data »
Guy Lebanon · Yi Mao -
2006 Poster: Large Margin Gaussian Mixture Models for Automatic Speech Recognition »
Fei Sha · Lawrence Saul -
2006 Talk: Large Margin Gaussian Mixture Models for Automatic Speech Recognition »
Fei Sha · Lawrence Saul -
2006 Poster: Isotonic Conditional Random Fields and Local Sentiment Flow »
Yi Mao · Guy Lebanon -
2006 Poster: Graph Regularization for Maximum Variance Unfolding with an Application to Sensor Localization »
Kilian Q Weinberger · Fei Sha · Qihui Zhu · Lawrence Saul