Timezone: »
During the last decade, many areas of Bayesian machine learning have reached a high level of maturity. This has resulted in a variety of theoretically sound and efficient algorithms for learning and inference in the presence of uncertainty. However, in the context of control, robotics, and reinforcement learning, uncertainty has not yet been treated with comparable rigor despite its central role in risk-sensitive control, sensori-motor control, robust control, and cautious control. A consistent treatment of uncertainty is also essential when dealing with stochastic policies, incomplete state information, and exploration strategies.
A typical situation where uncertainty comes into play is when the exact state transition dynamics are unknown and only limited or no expert knowledge is available and/or affordable. One option is to learn a model from data. However, if the model is too far off, this approach can result in arbitrarily bad solutions. This model bias can be sidestepped by the use of flexible model-free methods. The disadvantage of model-free methods is that they do not generalize and often make less efficient use of data. Therefore, they often need more trials than feasible to solve a problem on a real-world system. A probabilistic model could be used for efficient use of data while alleviating model bias by explicitly representing and incorporating uncertainty.
The use of probabilistic approaches requires (approximate) inference algorithms, where Bayesian machine learning can come into play. Although probabilistic modeling and inference conceptually fit into this context, they are not widespread in robotics, control, and reinforcement learning. Hence, this workshop aims to bring researchers together to discuss the need, the theoretical properties, and the practical implications of probabilistic methods in control, robotics, and reinforcement learning.
One particular focus will be on probabilistic reinforcement learning approaches that profit recent developments in optimal control which show that the problem can be substantially simplified if certain structure is imposed. The simplifications include linearity of the (Hamilton-Jacobi) Bellman equation. The duality with Bayesian estimation allow for analytical computation of the optimal control laws and closed form expressions of the optimal value functions.
Author Information
Marc Deisenroth (University College London)

Professor Marc Deisenroth is the DeepMind Chair in Artificial Intelligence at University College London and the Deputy Director of UCL's Centre for Artificial Intelligence. He also holds a visiting faculty position at the University of Johannesburg and Imperial College London. Marc's research interests center around data-efficient machine learning, probabilistic modeling and autonomous decision making. Marc was Program Chair of EWRL 2012, Workshops Chair of RSS 2013, EXPO-Co-Chair of ICML 2020, and Tutorials Co-Chair of NeurIPS 2021. In 2019, Marc co-organized the Machine Learning Summer School in London. He received Paper Awards at ICRA 2014, ICCAS 2016, and ICML 2020. He is co-author of the book [Mathematics for Machine Learning](https://mml-book.github.io) published by Cambridge University Press (2020).
Hilbert J Kappen (Radboud University)
Emo Todorov (University of Washington)
Duy Nguyen-Tuong (Bosch Research)
Carl Edward Rasmussen (University of Cambridge)
Jan Peters (TU Darmstadt & MPI Intelligent Systems)
Jan Peters is a full professor (W3) for Intelligent Autonomous Systems at the Computer Science Department of the Technische Universitaet Darmstadt and at the same time a senior research scientist and group leader at the Max-Planck Institute for Intelligent Systems, where he heads the interdepartmental Robot Learning Group. Jan Peters has received the Dick Volz Best 2007 US PhD Thesis Runner-Up Award, the Robotics: Science & Systems - Early Career Spotlight, the INNS Young Investigator Award, and the IEEE Robotics & Automation Society‘s Early Career Award as well as numerous best paper awards. In 2015, he was awarded an ERC Starting Grant. Jan Peters has studied Computer Science, Electrical, Mechanical and Control Engineering at TU Munich and FernUni Hagen in Germany, at the National University of Singapore (NUS) and the University of Southern California (USC). He has received four Master‘s degrees in these disciplines as well as a Computer Science PhD from USC.
More from the Same Authors
-
2020 : Differentiable Implicit Layers »
Andreas Look · Simona Doneva · Melih Kandemir · Rainer Gemulla · Jan Peters -
2021 : Imitation Learning from Pixel Observations for Continuous Control »
Samuel Cohen · Brandon Amos · Marc Deisenroth · Mikael Henaff · Eugene Vinitsky · Denis Yarats -
2021 : On Combining Expert Demonstrations in Imitation Learning via Optimal Transport »
ilana sebag · Samuel Cohen · Marc Deisenroth -
2021 : Sliced Multi-Marginal Optimal Transport »
Samuel Cohen · Alexander Terenin · Yannik Pitcan · Brandon Amos · Marc Deisenroth · Senanayak Sesh Kumar Karri -
2022 : Actually Sparse Variational Gaussian Processes »
Jake Cunningham · So Takao · Mark van der Wilk · Marc Deisenroth -
2022 : Gaussian Process parameterized Covariance Kernels for Non-stationary Regression »
Vidhi Lalchand · Talay Cheema · Laurence Aitchison · Carl Edward Rasmussen -
2022 : Short-term Prediction and Filtering of Solar Power Using State-Space Gaussian Processes »
So Takao · Sean Nassimiha · Peter Dudfield · Jack Kelly · Marc Deisenroth -
2022 : How crucial is Transformer in Decision Transformer? »
Max Siebenborn · Boris Belousov · Junning Huang · Jan Peters -
2022 : Optimal Transport for Offline Imitation Learning »
Yicheng Luo · zhengyao Jiang · Samuel Cohen · Edward Grefenstette · Marc Deisenroth -
2022 : Conditioned Score-Based Models for Learning Collision-Free Trajectory Generation »
Joao Carvalho · Mark Baierl · Julen Urain · Jan Peters -
2022 Poster: Sparse Gaussian Process Hyperparameters: Optimize or Integrate? »
Vidhi Lalchand · Wessel Bruinsma · David Burt · Carl Edward Rasmussen -
2022 Poster: Information-Theoretic Safe Exploration with Gaussian Processes »
Alessandro Bottero · Carlos Luis · Julia Vinogradska · Felix Berkenkamp · Jan Peters -
2021 Poster: Kernel Identification Through Transformers »
Fergus Simpson · Ian Davies · Vidhi Lalchand · Alessandro Vullo · Nicolas Durrande · Carl Edward Rasmussen -
2021 Poster: Marginalised Gaussian Processes with Nested Sampling »
Fergus Simpson · Vidhi Lalchand · Carl Edward Rasmussen -
2021 Poster: Vector-valued Gaussian Processes on Riemannian Manifolds via Gauge Independent Projected Kernels »
Michael Hutchinson · Alexander Terenin · Viacheslav Borovitskiy · So Takao · Yee Teh · Marc Deisenroth -
2020 : Combining variational autoencoder representations with structural descriptors improves prediction of docking scores »
Miguel Garcia-Ortegon · Carl Edward Rasmussen · Hiroshi Kajino -
2020 : GENNI: Visualising the Geometry of Equivalences for Neural Network Identifiability »
Arinbjörn Kolbeinsson · Nicholas Jennings · Marc Deisenroth · Daniel Lengyel · Janith Petangoda · Michalis Lazarou · Kate Highnam · John IF Falk -
2020 Poster: Matérn Gaussian Processes on Riemannian Manifolds »
Viacheslav Borovitskiy · Alexander Terenin · Peter Mostowsky · Marc Deisenroth -
2020 Poster: Self-Paced Deep Reinforcement Learning »
Pascal Klink · Carlo D'Eramo · Jan Peters · Joni Pajarinen -
2020 Oral: Self-Paced Deep Reinforcement Learning »
Pascal Klink · Carlo D'Eramo · Jan Peters · Joni Pajarinen -
2020 Session: Orals & Spotlights Track 25: Probabilistic Models/Statistics »
Marc Deisenroth · Matthew D. Hoffman -
2020 Poster: Probabilistic Active Meta-Learning »
Jean Kaddour · Steindor Saemundsson · Marc Deisenroth -
2020 Poster: Ensembling geophysical models with Bayesian Neural Networks »
Ushnish Sengupta · Matt Amos · Scott Hosking · Carl Edward Rasmussen · Matthew Juniper · Paul Young -
2020 Tutorial: (Track1) There and Back Again: A Tale of Slopes and Expectations Q&A »
Marc Deisenroth · Cheng Soon Ong -
2020 : Discussion Panel: Hugo Larochelle, Finale Doshi-Velez, Devi Parikh, Marc Deisenroth, Julien Mairal, Katja Hofmann, Phillip Isola, and Michael Bowling »
Hugo Larochelle · Finale Doshi-Velez · Marc Deisenroth · Devi Parikh · Julien Mairal · Katja Hofmann · Phillip Isola · Michael Bowling -
2020 Tutorial: (Track1) There and Back Again: A Tale of Slopes and Expectations »
Marc Deisenroth · Cheng Soon Ong -
2019 : Optico: A Framework for Model-Based Optimization with MuJoCo Physics - Invited Talk »
Emo Todorov -
2019 : Poster and Coffee Break 1 »
Aaron Sidford · Aditya Mahajan · Alejandro Ribeiro · Alex Lewandowski · Ali H Sayed · Ambuj Tewari · Angelika Steger · Anima Anandkumar · Asier Mujika · Hilbert J Kappen · Bolei Zhou · Byron Boots · Chelsea Finn · Chen-Yu Wei · Chi Jin · Ching-An Cheng · Christina Yu · Clement Gehring · Craig Boutilier · Dahua Lin · Daniel McNamee · Daniel Russo · David Brandfonbrener · Denny Zhou · Devesh Jha · Diego Romeres · Doina Precup · Dominik Thalmeier · Eduard Gorbunov · Elad Hazan · Elena Smirnova · Elvis Dohmatob · Emma Brunskill · Enrique Munoz de Cote · Ethan Waldie · Florian Meier · Florian Schaefer · Ge Liu · Gergely Neu · Haim Kaplan · Hao Sun · Hengshuai Yao · Jalaj Bhandari · James A Preiss · Jayakumar Subramanian · Jiajin Li · Jieping Ye · Jimmy Smith · Joan Bas Serrano · Joan Bruna · John Langford · Jonathan Lee · Jose A. Arjona-Medina · Kaiqing Zhang · Karan Singh · Yuping Luo · Zafarali Ahmed · Zaiwei Chen · Zhaoran Wang · Zhizhong Li · Zhuoran Yang · Ziping Xu · Ziyang Tang · Yi Mao · David Brandfonbrener · Shirli Di-Castro · Riashat Islam · Zuyue Fu · Abhishek Naik · Saurabh Kumar · Benjamin Petit · Angeliki Kamoutsi · Simone Totaro · Arvind Raghunathan · Rui Wu · Donghwan Lee · Dongsheng Ding · Alec Koppel · Hao Sun · Christian Tjandraatmadja · Mahdi Karami · Jincheng Mei · Chenjun Xiao · Junfeng Wen · Zichen Zhang · Ross Goroshin · Mohammad Pezeshki · Jiaqi Zhai · Philip Amortila · Shuo Huang · Mariya Vasileva · El houcine Bergou · Adel Ahmadyan · Haoran Sun · Sheng Zhang · Lukas Gruber · Yuanhao Wang · Tetiana Parshakova -
2019 : Invited Talk - Marc Deisenroth »
Marc Deisenroth -
2018 : Discussion Panel: Ryan Adams, Nicolas Heess, Leslie Kaelbling, Shie Mannor, Emo Todorov (moderator: Roy Fox) »
Ryan Adams · Nicolas Heess · Leslie Kaelbling · Shie Mannor · Emo Todorov · Roy Fox -
2018 : Solving inference and control problems with the same machinery (Emo Todorov) »
Emo Todorov -
2018 Poster: Gaussian Process Conditional Density Estimation »
Vincent Dutordoir · Hugh Salimbeni · James Hensman · Marc Deisenroth -
2018 Poster: Maximizing acquisition functions for Bayesian optimization »
James Wilson · Frank Hutter · Marc Deisenroth -
2018 Poster: Orthogonally Decoupled Variational Gaussian Processes »
Hugh Salimbeni · Ching-An Cheng · Byron Boots · Marc Deisenroth -
2017 : Panel Discussion »
Matt Botvinick · Emma Brunskill · Marcos Campos · Jan Peters · Doina Precup · David Silver · Josh Tenenbaum · Roy Fox -
2017 : Hierarchical Imitation and Reinforcement Learning for Robotics (Jan Peters) »
Jan Peters -
2017 Poster: Convolutional Gaussian Processes »
Mark van der Wilk · Carl Edward Rasmussen · James Hensman -
2017 Poster: Doubly Stochastic Variational Inference for Deep Gaussian Processes »
Hugh Salimbeni · Marc Deisenroth -
2017 Spotlight: Doubly Stochastic Variational Inference for Deep Gaussian Processes »
Hugh Salimbeni · Marc Deisenroth -
2017 Oral: Convolutional Gaussian Processes »
Mark van der Wilk · Carl Edward Rasmussen · James Hensman -
2017 Poster: Data-Efficient Reinforcement Learning in Continuous State-Action Gaussian-POMDPs »
Rowan McAllister · Carl Edward Rasmussen -
2017 Poster: Identification of Gaussian Process State Space Models »
Stefanos Eleftheriadis · Tom Nicholson · Marc Deisenroth · James Hensman -
2016 : Bert Kappen (Radboud University) »
Hilbert J Kappen -
2016 Poster: Understanding Probabilistic Sparse Gaussian Process Approximations »
Matthias Bauer · Mark van der Wilk · Carl Edward Rasmussen -
2016 Poster: Catching heuristics are optimal control policies »
Boris Belousov · Gerhard Neumann · Constantin Rothkopf · Jan Peters -
2015 : Applications of Bayesian Optimization to Systems »
Marc Deisenroth -
2015 Poster: Model-Based Relative Entropy Stochastic Search »
Abbas Abdolmaleki · Rudolf Lioutikov · Jan Peters · Nuno Lau · Luis Pualo Reis · Gerhard Neumann -
2014 Workshop: Novel Trends and Applications in Reinforcement Learning »
Csaba Szepesvari · Marc Deisenroth · Sergey Levine · Pedro Ortega · Brian Ziebart · Emma Brunskill · Naftali Tishby · Gerhard Neumann · Daniel Lee · Sridhar Mahadevan · Pieter Abbeel · David Silver · Vicenç Gómez -
2014 Poster: Distributed Variational Inference in Sparse Gaussian Process Regression and Latent Variable Models »
Yarin Gal · Mark van der Wilk · Carl Edward Rasmussen -
2014 Demonstration: Learning for Tactile Manipulation »
Tucker Hermans · Filipe Veiga · Janine Hölscher · Herke van Hoof · Jan Peters -
2014 Poster: Variational Gaussian Process State-Space Models »
Roger Frigola · Yutian Chen · Carl Edward Rasmussen -
2013 Workshop: Advances in Machine Learning for Sensorimotor Control »
Thomas Walsh · Alborz Geramifard · Marc Deisenroth · Jonathan How · Jan Peters -
2013 Workshop: Planning with Information Constraints for Control, Reinforcement Learning, Computational Neuroscience, Robotics and Games. »
Hilbert J Kappen · Naftali Tishby · Jan Peters · Evangelos Theodorou · David H Wolpert · Pedro Ortega -
2013 Poster: Probabilistic Movement Primitives »
Alexandros Paraschos · Christian Daniel · Jan Peters · Gerhard Neumann -
2013 Poster: Bayesian Inference and Learning in Gaussian Process State-Space Models with Particle MCMC »
Roger Frigola · Fredrik Lindsten · Thomas Schön · Carl Edward Rasmussen -
2012 Poster: Expectation Propagation in Gaussian Process Dynamical Systems »
Marc Deisenroth · Shakir Mohamed -
2012 Poster: Active Learning of Model Evidence Using Bayesian Quadrature »
Michael A Osborne · David Duvenaud · Roman Garnett · Carl Edward Rasmussen · Stephen J Roberts · Zoubin Ghahramani -
2012 Poster: Algorithms for Learning Markov Field Policies »
Abdeslam Boularias · Oliver Kroemer · Jan Peters -
2011 Poster: Gaussian Process Training with Input Noise »
Andrew McHutchon · Carl Edward Rasmussen -
2011 Poster: A Non-Parametric Approach to Dynamic Programming »
Oliver Kroemer · Jan Peters -
2011 Oral: A Non-Parametric Approach to Dynamic Programming »
Oliver Kroemer · Jan Peters -
2011 Poster: Additive Gaussian Processes »
David Duvenaud · Hannes Nickisch · Carl Edward Rasmussen -
2011 Poster: Speedy Q-Learning »
Mohammad Gheshlaghi Azar · Remi Munos · Mohammad Ghavamzadeh · Hilbert J Kappen -
2010 Spotlight: Switched Latent Force Models for Movement Segmentation »
Mauricio A Alvarez · Jan Peters · Bernhard Schölkopf · Neil D Lawrence -
2010 Poster: Switched Latent Force Models for Movement Segmentation »
Mauricio A Alvarez · Jan Peters · Bernhard Schölkopf · Neil D Lawrence -
2010 Poster: Movement extraction by detecting dynamics switches and repetitions »
Silvia Chiappa · Jan Peters -
2008 Poster: Using Bayesian Dynamical Systems for Motion Template Libraries »
Silvia Chiappa · Jens Kober · Jan Peters -
2008 Poster: Fitted Q-iteration by Advantage Weighted Regression »
Gerhard Neumann · Jan Peters -
2008 Poster: Bounds on marginal probability distributions »
Joris M Mooij · Hilbert J Kappen -
2008 Poster: Policy Search for Motor Primitives in Robotics »
Jens Kober · Jan Peters -
2008 Spotlight: Bounds on marginal probability distributions »
Joris M Mooij · Hilbert J Kappen -
2008 Spotlight: Fitted Q-iteration by Advantage Weighted Regression »
Gerhard Neumann · Jan Peters -
2008 Oral: Policy Search for Motor Primitives in Robotics »
Jens Kober · Jan Peters -
2008 Poster: Self-organization using dynamical synapses »
Vicenç Gómez · Andreas Kaltenbrunner · Vicente López · Hilbert J Kappen -
2008 Poster: Local Gaussian Process Regression for Real Time Online Model Learning »
Duy Nguyen-Tuong · Matthias Seeger · Jan Peters -
2007 Workshop: Robotics Challenges for Machine Learning »
Jan Peters · Marc Toussaint -
2006 Workshop: Towards a New Reinforcement Learning? »
Jan Peters · Stefan Schaal · Drew Bagnell -
2006 Tutorial: Advances in Gaussian Processes »
Carl Edward Rasmussen