Timezone: »
Statistical topic models are a class of Bayesian latent variable models, originally developed for analyzing the semantic content of large document corpora. With the increasing availability of other large, heterogeneous data collections, topic models have been adapted to model data from fields as diverse as computer vision, finance, bioinformatics, cognitive science, music, and the social sciences. While the underlying models are often extremely similar, these communities use topic models in different ways in order to achieve different goals. This one-day workshop will bring together topic modeling researchers from multiple disciplines, providing an opportunity for attendees to meet, present their work and share ideas, as well as inform the wider NIPS community about current research in topic modeling. This workshop will address the following specific goals: 1) Identify and formalize open research areas; 2) propose, explore, and discuss new application areas; 3) discuss how best to facilitate transfer of research ideas between application domains; 4) direct future work and generate new application areas; and 5) explore novel modeling approaches and collaborative research directions. The workshop will consist of invited talks by established researchers from multiple research communities, contributed talks, a poster session, and a panel session.
*Identify and formalize open research areas *Propose, explore, and discuss new application areas *Discuss how best to facilitate transfer of research ideas between application domains *Direct future work and generate new application areas *Explore novel modeling approaches and collaborative research directions
The workshop will consist of invited talks by established researchers from multiple research communities, contributed talks, a poster session, and a panel session.
Author Information
David Blei (Columbia University)
Jordan Boyd-Graber (University of Maryland)
Jonathan Chang (Facebook)
Katherine Heller (Google)
Hanna Wallach (Microsoft)
More from the Same Authors
-
2021 Spotlight: Is Automated Topic Model Evaluation Broken? The Incoherence of Coherence »
Alexander Hoyle · Pranav Goel · Andrew Hian-Cheong · Denis Peskov · Jordan Boyd-Graber · Philip Resnik -
2021 : Maintaining fairness across distribution shifts: do we have viable solutions for real-world applications? »
Jessica Schrouff · Natalie Harris · Sanmi Koyejo · Ibrahim Alabdulmohsin · Eva Schnider · Diana Mincu · Christina Chen · Awa Dieng · Yuan Liu · Vivek Natarajan · Katherine Heller · Alexander D'Amour -
2022 : Participatory Systems for Personalized Prediction »
Hailey James · Chirag Nagpal · Katherine Heller · Berk Ustun -
2022 : Participatory Systems for Personalized Prediction »
Hailey James · Berk Ustun · Chirag Nagpal · Katherine Heller -
2023 Poster: Participatory Personalization in Classification »
Hailey James · Chirag Nagpal · Katherine Heller · Berk Ustun -
2022 : Participatory Systems for Personalized Prediction »
Hailey James · Chirag Nagpal · Katherine Heller · Berk Ustun -
2022 : Participatory Systems for Personalized Prediction »
Hailey James · Chirag Nagpal · Katherine Heller · Berk Ustun -
2022 Poster: Diagnosing failures of fairness transfer across distribution shift in real-world medical settings »
Jessica Schrouff · Natalie Harris · Sanmi Koyejo · Ibrahim Alabdulmohsin · Eva Schnider · Krista Opsahl-Ong · Alexander Brown · Subhrajit Roy · Diana Mincu · Christina Chen · Awa Dieng · Yuan Liu · Vivek Natarajan · Alan Karthikesalingam · Katherine Heller · Silvia Chiappa · Alexander D'Amour -
2021 Panel: How Should a Machine Learning Researcher Think About AI Ethics? »
Amanda Askell · Abeba Birhane · Jesse Dodge · Casey Fiesler · Pascale N Fung · Hanna Wallach -
2021 Poster: Is Automated Topic Model Evaluation Broken? The Incoherence of Coherence »
Alexander Hoyle · Pranav Goel · Andrew Hian-Cheong · Denis Peskov · Jordan Boyd-Graber · Philip Resnik -
2020 : Panel & Closing »
Tamara Broderick · Laurent Dinh · Neil Lawrence · Kristian Lum · Hanna Wallach · Sinead Williamson -
2020 : Showdown against trivia experts »
Jordan Boyd-Graber -
2020 Workshop: Machine Learning for Mobile Health »
Joseph Futoma · Walter Dempsey · Katherine Heller · Yian Ma · Nicholas Foti · Marianne Njifon · Kelly Zhang · Jieru Shi -
2020 : Morning keynote »
Hanna Wallach · Rosie Campbell -
2020 Workshop: I Can’t Believe It’s Not Better! Bridging the gap between theory and empiricism in probabilistic machine learning »
Jessica Forde · Francisco Ruiz · Melanie Fernandez Pradier · Aaron Schein · Finale Doshi-Velez · Isabel Valera · David Blei · Hanna Wallach -
2020 Symposium: COVID-19 Symposium Day 2 »
Andrew Beam · Tristan Naumann · Katherine Heller · Elaine Nsoesie -
2020 Symposium: COVID-19 Symposium Day 1 »
Andrew Beam · Tristan Naumann · Katherine Heller · Elaine Nsoesie -
2019 Poster: Reconciling meta-learning and continual learning with online mixtures of tasks »
Ghassen Jerfel · Erin Grant · Tom Griffiths · Katherine Heller -
2019 Spotlight: Reconciling meta-learning and continual learning with online mixtures of tasks »
Ghassen Jerfel · Erin Grant · Tom Griffiths · Katherine Heller -
2019 Poster: Poisson-Randomized Gamma Dynamical Systems »
Aaron Schein · Scott Linderman · Mingyuan Zhou · David Blei · Hanna Wallach -
2018 : Katherine Heller »
Katherine Heller -
2018 : Research Panel »
Sinead Williamson · Barbara Engelhardt · Tom Griffiths · Neil Lawrence · Hanna Wallach -
2018 : Panel on research process »
Zachary Lipton · Charles Sutton · Finale Doshi-Velez · Hanna Wallach · Suchi Saria · Rich Caruana · Thomas Rainforth -
2018 : Hanna Wallach - Improving Fairness in Machine Learning Systems: What Do Industry Practitioners Need? »
Hanna Wallach -
2018 Poster: Multilingual Anchoring: Interactive Topic Modeling and Alignment Across Languages »
Michelle Yuan · Benjamin Van Durme · Jordan Boyd-Graber -
2017 : Competition V: Human-Computer Question Answering »
Jordan Boyd-Graber · Hal Daumé III · He He · Mohit Iyyer · Pedro Rodriguez -
2017 : Panel: On the Foundations and Future of Approximate Inference »
David Blei · Zoubin Ghahramani · Katherine Heller · Tim Salimans · Max Welling · Matthew D. Hoffman -
2017 : Poster spotlights »
Hiroshi Kuwajima · Masayuki Tanaka · Qingkai Liang · Matthieu Komorowski · Fanyu Que · Thalita F Drumond · Aniruddh Raghu · Leo Anthony Celi · Christina Göpfert · Andrew Ross · Sarah Tan · Rich Caruana · Yin Lou · Devinder Kumar · Graham Taylor · Forough Poursabzi-Sangdeh · Jennifer Wortman Vaughan · Hanna Wallach -
2017 Poster: An inner-loop free solution to inverse problems using deep neural networks »
Kai Fan · Qi Wei · Lawrence Carin · Katherine Heller -
2016 Poster: Poisson-Gamma dynamical systems »
Aaron Schein · Hanna Wallach · Mingyuan Zhou -
2016 Oral: Poisson-Gamma dynamical systems »
Aaron Schein · Hanna Wallach · Mingyuan Zhou -
2016 Poster: Flexible Models for Microclustering with Application to Entity Resolution »
Brenda Betancourt · Giacomo Zanella · Jeffrey Miller · Hanna Wallach · Abbas Zaidi · Beka Steorts -
2015 Workshop: Bayesian Nonparametrics: The Next Generation »
Tamara Broderick · Nick Foti · Aaron Schein · Alex Tank · Hanna Wallach · Sinead Williamson -
2015 Poster: Parallelizing MCMC with Random Partition Trees »
Xiangyu Wang · Fangjian Guo · Katherine Heller · David B Dunson -
2015 Demonstration: Interactive Incremental Question Answering »
Jordan Boyd-Graber · Mohit Iyyer -
2015 Poster: Fast Second Order Stochastic Backpropagation for Variational Inference »
Kai Fan · Ziteng Wang · Jeff Beck · James Kwok · Katherine Heller -
2014 Workshop: Advances in Variational Inference »
David Blei · Shakir Mohamed · Michael Jordan · Charles Blundell · Tamara Broderick · Matthew D. Hoffman -
2014 Poster: A Filtering Approach to Stochastic Variational Inference »
Neil Houlsby · David Blei -
2014 Poster: Smoothed Gradients for Stochastic Variational Inference »
Stephan Mandt · David Blei -
2014 Poster: Content-based recommendations with Poisson factorization »
Prem Gopalan · Laurent Charlin · David Blei -
2014 Poster: Learning a Concept Hierarchy from Multi-labeled Documents »
Viet-An Nguyen · Jordan Boyd-Graber · Philip Resnik · Jonathan Chang -
2013 Workshop: Topic Models: Computation, Application, and Evaluation »
David Mimno · Amr Ahmed · Jordan Boyd-Graber · Ankur Moitra · Hanna Wallach · Alexander Smola · David Blei · Anima Anandkumar -
2013 Workshop: Probabilistic Models for Big Data »
Neil D Lawrence · Joaquin Quiñonero-Candela · Tianshi Gao · James Hensman · Zoubin Ghahramani · Max Welling · David Blei · Ralf Herbrich -
2013 Poster: Binary to Bushy: Bayesian Hierarchical Clustering with the Beta Coalescent »
Yuening Hu · Jordan Boyd-Graber · Hal Daumé III · Z. Irene Ying -
2013 Poster: Lexical and Hierarchical Topic Regression »
Viet-An Nguyen · Jordan Boyd-Graber · Philip Resnik -
2013 Poster: Efficient Online Inference for Bayesian Nonparametric Relational Models »
Dae Il Kim · Prem Gopalan · David Blei · Erik Sudderth -
2013 Poster: Modeling Overlapping Communities with Node Popularities »
Prem Gopalan · Chong Wang · David Blei -
2012 Poster: Topic-Partitioned Multinetwork Embeddings »
Peter Krafft · Juston S Moore · Hanna Wallach · Bruce Desmarais -
2012 Poster: Complex Inference in Neural Circuits with Probabilistic Population Codes and Topic Models »
Jeff Beck · Katherine Heller · Alexandre Pouget -
2012 Spotlight: Complex Inference in Neural Circuits with Probabilistic Population Codes and Topic Models »
Jeff Beck · Katherine Heller · Alexandre Pouget -
2012 Poster: Truncation-free Online Variational Inference for Bayesian Nonparametric Models »
Chong Wang · David Blei -
2012 Poster: Scalable Inference of Overlapping Communities »
Prem Gopalan · David Mimno · Sean Gerrish · Michael Freedman · David Blei -
2012 Poster: Modelling Reciprocating Relationships with Hawkes processes »
Charles Blundell · Katherine Heller · Jeff Beck -
2012 Spotlight: Scalable Inference of Overlapping Communities »
Prem Gopalan · David Mimno · Sean Gerrish · Michael Freedman · David Blei -
2012 Session: Oral Session 7 »
Katherine Heller -
2012 Spotlight: Modelling Reciprocating Relationships with Hawkes processes »
Charles Blundell · Katherine Heller · Jeff Beck -
2012 Poster: How They Vote: Issue-Adjusted Models of Legislative Behavior »
Sean Gerrish · David Blei -
2011 Workshop: 2nd Workshop on Computational Social Science and the Wisdom of Crowds »
Winter Mason · Jennifer Wortman Vaughan · Hanna Wallach -
2011 Poster: Testing a Bayesian Measure of Representativeness Using a Large Image Database »
Joshua T Abbott · Katherine Heller · Zoubin Ghahramani · Tom Griffiths -
2011 Session: Oral Session 7 »
Katherine Heller -
2011 Poster: Spatial distance dependent Chinese Restaurant Process for image segmentation »
Soumya Ghosh · Andrei B Ungureanu · Erik Sudderth · David Blei -
2010 Workshop: Computational Social Science and the Wisdom of Crowds »
Jennifer Wortman Vaughan · Hanna Wallach -
2010 Session: Oral Session 18 »
David Blei -
2010 Spotlight: Online Learning for Latent Dirichlet Allocation »
Matthew D. Hoffman · David Blei · Francis Bach -
2010 Session: Spotlights Session 9 »
Katherine Heller -
2010 Session: Oral Session 11 »
Katherine Heller -
2010 Poster: Online Learning for Latent Dirichlet Allocation »
Matthew D. Hoffman · David Blei · Francis Bach -
2010 Poster: Nonparametric Density Estimation for Stochastic Optimization with an Observable State Variable »
Lauren A Hannah · Warren B Powell · David Blei -
2009 Poster: Reading Tea Leaves: How Humans Interpret Topic Models »
Jonathan Chang · Jordan Boyd-Graber · Sean Gerrish · Chong Wang · David Blei -
2009 Poster: Hierarchical Learning of Dimensional Biases in Human Categorization »
Katherine Heller · Adam Sanborn · Nick Chater -
2009 Spotlight: Hierarchical Learning of Dimensional Biases in Human Categorization »
Katherine Heller · Adam Sanborn · Nick Chater -
2009 Oral: Reading Tea Leaves: How Humans Interpret Topic Models »
Jonathan Chang · Jordan Boyd-Graber · Sean Gerrish · Chong Wang · David Blei -
2009 Poster: Decoupling Sparsity and Smoothness in the Discrete Hierarchical Dirichlet Process »
Chong Wang · David Blei -
2009 Spotlight: Decoupling Sparsity and Smoothness in the Discrete Hierarchical Dirichlet Process »
Chong Wang · David Blei -
2009 Poster: Variational Inference for the Nested Chinese Restaurant Process »
Chong Wang · David Blei -
2009 Poster: A Bayesian Analysis of Dynamics in Free Recall »
Richard Socher · Samuel J Gershman · Adler Perotte · Per Sederberg · David Blei · Kenneth Norman -
2009 Poster: Rethinking LDA: Why Priors Matter »
Hanna Wallach · David Mimno · Andrew McCallum -
2009 Spotlight: Rethinking LDA: Why Priors Matter »
Hanna Wallach · David Mimno · Andrew McCallum -
2008 Workshop: Analyzing Graphs: Theory and Applications »
Edo M Airoldi · David Blei · Jake M Hofman · Tony Jebara · Eric Xing -
2008 Poster: Mixed Membership Stochastic Blockmodels »
Edo M Airoldi · David Blei · Stephen E Fienberg · Eric Xing -
2008 Poster: Bayesian Exponential Family PCA »
Shakir Mohamed · Katherine Heller · Zoubin Ghahramani -
2008 Spotlight: Bayesian Exponential Family PCA »
Shakir Mohamed · Katherine Heller · Zoubin Ghahramani -
2008 Spotlight: Mixed Membership Stochastic Blockmodels »
Edo M Airoldi · David Blei · Stephen E Fienberg · Eric Xing -
2008 Poster: Syntactic Topic Models »
Jordan Boyd-Graber · David Blei -
2008 Poster: Relative Performance Guarantees for Approximate Inference in Latent Dirichlet Allocation »
Indraneel Mukherjee · David Blei -
2008 Spotlight: Syntactic Topic Models »
Jordan Boyd-Graber · David Blei -
2008 Spotlight: Relative Performance Guarantees for Approximate Inference in Latent Dirichlet Allocation »
Indraneel Mukherjee · David Blei -
2007 Poster: Supervised Topic Models »
David Blei · Jon McAuliffe