Timezone: »

 
Workshop
Analyzing Networks and Learning With Graphs
Edo M Airoldi · Jure Leskovec · Jon Kleinberg · Josh Tenenbaum

Fri Dec 11 07:30 AM -- 06:30 PM (PST) @ Westin: Nordic
Event URL: http://snap.stanford.edu/nipsgraphs2009/ »

Recent research in machine learning and statistics has seen the proliferation of computational methods for analyzing networks and learning with graphs. These methods support progress in many application areas, including the social sciences, biology, medicine, neuroscience, physics, finance, and economics.

The primary goal of the workshop is to actively promote a concerted effort to address statistical, methodological and computational issues that arise when modeling and analyzing large collection of data that are largely represented as static and/or dynamic graphs. To this end, we aim at bringing together researchers from applied disciplines such as sociology, economics, medicine and biology, together with researchers from more theoretical disciplines such as mathematics and physics, within our community of statisticians and computer scientists. Different communities use diverse ideas and mathematical tools; our goal is to to foster cross-disciplinary collaborations and intellectual exchange.

Presentations will include novel graph models, the application of established models to new domains, theoretical and computational issues, limitations of current graph methods and directions for future research.

Author Information

Edo M Airoldi (Harvard University)
Jure Leskovec (Stanford University/Pinterest)
Jon Kleinberg (Cornell University)
Josh Tenenbaum (MIT)

Josh Tenenbaum is an Associate Professor of Computational Cognitive Science at MIT in the Department of Brain and Cognitive Sciences and the Computer Science and Artificial Intelligence Laboratory (CSAIL). He received his PhD from MIT in 1999, and was an Assistant Professor at Stanford University from 1999 to 2002. He studies learning and inference in humans and machines, with the twin goals of understanding human intelligence in computational terms and bringing computers closer to human capacities. He focuses on problems of inductive generalization from limited data -- learning concepts and word meanings, inferring causal relations or goals -- and learning abstract knowledge that supports these inductive leaps in the form of probabilistic generative models or 'intuitive theories'. He has also developed several novel machine learning methods inspired by human learning and perception, most notably Isomap, an approach to unsupervised learning of nonlinear manifolds in high-dimensional data. He has been Associate Editor for the journal Cognitive Science, has been active on program committees for the CogSci and NIPS conferences, and has co-organized a number of workshops, tutorials and summer schools in human and machine learning. Several of his papers have received outstanding paper awards or best student paper awards at the IEEE Computer Vision and Pattern Recognition (CVPR), NIPS, and Cognitive Science conferences. He is the recipient of the New Investigator Award from the Society for Mathematical Psychology (2005), the Early Investigator Award from the Society of Experimental Psychologists (2007), and the Distinguished Scientific Award for Early Career Contribution to Psychology (in the area of cognition and human learning) from the American Psychological Association (2008).

More from the Same Authors