Timezone: »
The world has a sustainability problem. Humans currently consume an average of 16TW of power (and rising), more than 86% of which comes from (unsustainable) fossil fuels. There is a range of estimates as to when this supply will run out, but this is a scenario that may well happen within our lifetimes. Even more pressing is the effect that such fuels have on our climate: given no attempts to reduce the world's fossil fuel usage, even the most conservative climate models predict that the world temperature will increase by over five degrees (Fahrenheit) in the next 90 years, an increase that could cause ecological disasters on a global scale. Building a sustainable infrastructure for energy and ecosystems is shaping up to be one of the grand scientific and political challenges of the 21st century. Furthermore, there is a growing consensus that many aspects of sustainability are fundamentally information systems problems, tasks where machine learning can play a significant role.
This mini-symposium will bring together leading researchers with both machine learning backgrounds and energy/sustainability backgrounds to address the question: how can machine learning help address the world's sustainability problem? The mini-symposium will also seek to answer: What is the current state of work directed at sustainability, energy, and ecology in the machine learning, operations research, and optimization communities? What are the primary scientific and technical challenges in information processing for sustainability? And finally, what are (and what aren't) areas where machine learning can make a genuine impact on the science of sustainability?
Because this is an emerging field of research, the talks at this symposium will aimed at the general NIPS audience. There is a growing number of researchers working in sustainability, but even more broadly, we think that such problems have the potential to advance basic machine learning in a manner similar to other important applications, such as computer vision, natural language processing, and computational biology. Sustainability problems offer an equally rich set of domains, and solutions to these problems will have a genuine impact on the world.
Author Information
J. Zico Kolter (Carnegie Mellon University / Bosch Center for AI)
Zico Kolter is an Assistant Professor in the School of Computer Science at Carnegie Mellon University, and also serves as Chief Scientist of AI Research for the Bosch Center for Artificial Intelligence. His work focuses on the intersection of machine learning and optimization, with a large focus on developing more robust, explainable, and rigorous methods in deep learning. In addition, he has worked on a number of application areas, highlighted by work on sustainability and smart energy systems. He is the recipient of the DARPA Young Faculty Award, and best paper awards at KDD, IJCAI, and PESGM.
Thomas Dietterich (Oregon State University)
Tom Dietterich (AB Oberlin College 1977; MS University of Illinois 1979; PhD Stanford University 1984) is Professor and Director of Intelligent Systems Research at Oregon State University. Among his contributions to machine learning research are (a) the formalization of the multiple-instance problem, (b) the development of the error-correcting output coding method for multi-class prediction, (c) methods for ensemble learning, (d) the development of the MAXQ framework for hierarchical reinforcement learning, and (e) the application of gradient tree boosting to problems of structured prediction and latent variable models. Dietterich has pursued application-driven fundamental research in many areas including drug discovery, computer vision, computational sustainability, and intelligent user interfaces. Dietterich has served the machine learning community in a variety of roles including Executive Editor of the Machine Learning journal, co-founder of the Journal of Machine Learning Research, editor of the MIT Press Book Series on Adaptive Computation and Machine Learning, and editor of the Morgan-Claypool Synthesis series on Artificial Intelligence and Machine Learning. He was Program Co-Chair of AAAI-1990, Program Chair of NIPS-2000, and General Chair of NIPS-2001. He was first President of the International Machine Learning Society (the parent organization of ICML) and served a term on the NIPS Board of Trustees and the Council of AAAI.
Andrew Y Ng (DeepLearning.AI)
More from the Same Authors
-
2020 : An adversarially robust approach to security-constrained optimal power flow »
Neeraj Vijay Bedmutha · Priya Donti · J. Zico Kolter -
2022 : Generative Posterior Networks for Approximately Bayesian Epistemic Uncertainty Estimation »
Melrose Roderick · Felix Berkenkamp · Fatemeh Sheikholeslami · J. Zico Kolter -
2022 : Denoised Smoothing with Sample Rejection for Robustifying Pretrained Classifiers »
Fatemeh Sheikholeslami · Wan-Yi Lin · Jan Hendrik Metzen · Huan Zhang · J. Zico Kolter -
2022 : A Unified Approach to Reinforcement Learning, Quantal Response Equilibria, and Two-Player Zero-Sum Games »
Samuel Sokota · Ryan D'Orazio · J. Zico Kolter · Nicolas Loizou · Marc Lanctot · Ioannis Mitliagkas · Noam Brown · Christian Kroer -
2022 : Uncertainty-Driven Exploration for Generalization in Reinforcement Learning »
Yiding Jiang · J. Zico Kolter · Roberta Raileanu -
2022 : Improving Adversarial Robustness via Joint Classification and Multiple Explicit Detection Classes »
Sina Baharlouei · Fatemeh Sheikholeslami · Meisam Razaviyayn · J. Zico Kolter -
2023 : Predicting the Performance of Foundation Models via Agreement-on-the-line »
Rahul Saxena · Aman Mehra · Taeyoun Kim · Christina Baek · J. Zico Kolter · Aditi Raghunathan -
2023 : Predicting the Performance of Foundation Models via Agreement-on-the-Line »
Rahul Saxena · Aman Mehra · Taeyoun Kim · Christina Baek · J. Zico Kolter · Aditi Raghunathan -
2023 : Reliable Test-Time Adaptation via Agreement-on-the-Line »
Eungyeup Kim · Mingjie Sun · Aditi Raghunathan · J. Zico Kolter -
2023 Workshop: XAI in Action: Past, Present, and Future Applications »
Chhavi Yadav · Michal Moshkovitz · Nave Frost · Suraj Srinivas · Bingqing Chen · Valentyn Boreiko · Himabindu Lakkaraju · J. Zico Kolter · Dotan Di Castro · Kamalika Chaudhuri -
2023 Poster: On the Importance of Exploration for Generalization in Reinforcement Learning »
Yiding Jiang · J. Zico Kolter · Roberta Raileanu -
2023 Poster: Deep Equilibrium Based Neural Operators for Steady-State PDEs »
Tanya Marwah · Ashwini Pokle · J. Zico Kolter · Zachary Lipton · Jianfeng Lu · Andrej Risteski -
2023 Poster: Learning with Explanation Constraints »
Rattana Pukdee · Dylan Sam · J. Zico Kolter · Maria-Florina Balcan · Pradeep Ravikumar -
2023 Poster: Permutation Equivariant Neural Functionals »
Allan Zhou · Kaien Yang · Kaylee Burns · Adriano Cardace · Yiding Jiang · Samuel Sokota · J. Zico Kolter · Chelsea Finn -
2023 Poster: One-Step Diffusion Distillation via Deep Equilibrium Models »
Zhengyang Geng · Ashwini Pokle · J. Zico Kolter -
2023 Poster: Neural Functional Transformers »
Allan Zhou · Kaien Yang · Yiding Jiang · Kaylee Burns · Winnie Xu · Samuel Sokota · J. Zico Kolter · Chelsea Finn -
2023 Poster: Provably Bounding Neural Network Preimages »
Suhas Kotha · Christopher Brix · J. Zico Kolter · Krishnamurthy Dvijotham · Huan Zhang -
2023 Poster: Language Models are Weak Learners »
Hariharan Manikandan · Yiding Jiang · J. Zico Kolter -
2022 Workshop: Trustworthy and Socially Responsible Machine Learning »
Huan Zhang · Linyi Li · Chaowei Xiao · J. Zico Kolter · Anima Anandkumar · Bo Li -
2022 : Zico Kolter, Adapt like you train: How optimization at training time affects model finetuning and adaptation »
J. Zico Kolter -
2022 Poster: Characterizing Datapoints via Second-Split Forgetting »
Pratyush Maini · Saurabh Garg · Zachary Lipton · J. Zico Kolter -
2022 Poster: Learning Options via Compression »
Yiding Jiang · Evan Liu · Benjamin Eysenbach · J. Zico Kolter · Chelsea Finn -
2022 Poster: Efficiently Computing Local Lipschitz Constants of Neural Networks via Bound Propagation »
Zhouxing Shi · Yihan Wang · Huan Zhang · J. Zico Kolter · Cho-Jui Hsieh -
2022 Poster: Test Time Adaptation via Conjugate Pseudo-labels »
Sachin Goyal · Mingjie Sun · Aditi Raghunathan · J. Zico Kolter -
2022 Poster: Deep Equilibrium Approaches to Diffusion Models »
Ashwini Pokle · Zhengyang Geng · J. Zico Kolter -
2022 Poster: Agreement-on-the-line: Predicting the Performance of Neural Networks under Distribution Shift »
Christina Baek · Yiding Jiang · Aditi Raghunathan · J. Zico Kolter -
2022 Poster: General Cutting Planes for Bound-Propagation-Based Neural Network Verification »
Huan Zhang · Shiqi Wang · Kaidi Xu · Linyi Li · Bo Li · Suman Jana · Cho-Jui Hsieh · J. Zico Kolter -
2022 Poster: Path Independent Equilibrium Models Can Better Exploit Test-Time Computation »
Cem Anil · Ashwini Pokle · Kaiqu Liang · Johannes Treutlein · Yuhuai Wu · Shaojie Bai · J. Zico Kolter · Roger Grosse -
2022 Poster: The Pitfalls of Regularization in Off-Policy TD Learning »
Gaurav Manek · J. Zico Kolter -
2021 : Panel B: Safe Learning and Decision Making in Uncertain and Unstructured Environments »
Yisong Yue · J. Zico Kolter · Ivan Dario D Jimenez Rodriguez · Dragos Margineantu · Animesh Garg · Melissa Greeff -
2021 : Enforcing Robustness for Neural Network Policies »
J. Zico Kolter -
2021 Poster: Beta-CROWN: Efficient Bound Propagation with Per-neuron Split Constraints for Neural Network Robustness Verification »
Shiqi Wang · Huan Zhang · Kaidi Xu · Xue Lin · Suman Jana · Cho-Jui Hsieh · J. Zico Kolter -
2021 Poster: Joint inference and input optimization in equilibrium networks »
Swaminathan Gurumurthy · Shaojie Bai · Zachary Manchester · J. Zico Kolter -
2021 Poster: $(\textrm{Implicit})^2$: Implicit Layers for Implicit Representations »
Zhichun Huang · Shaojie Bai · J. Zico Kolter -
2021 Poster: Boosted CVaR Classification »
Runtian Zhai · Chen Dan · Arun Suggala · J. Zico Kolter · Pradeep Ravikumar -
2021 Poster: Training Certifiably Robust Neural Networks with Efficient Local Lipschitz Bounds »
Yujia Huang · Huan Zhang · Yuanyuan Shi · J. Zico Kolter · Anima Anandkumar -
2021 Poster: Adversarially robust learning for security-constrained optimal power flow »
Priya Donti · Aayushya Agarwal · Neeraj Vijay Bedmutha · Larry Pileggi · J. Zico Kolter -
2021 Poster: Robustness between the worst and average case »
Leslie Rice · Anna Bair · Huan Zhang · J. Zico Kolter -
2021 Poster: Monte Carlo Tree Search With Iteratively Refining State Abstractions »
Samuel Sokota · Caleb Y Ho · Zaheen Ahmad · J. Zico Kolter -
2020 : Mini-panel discussion 3 - Prioritizing Real World RL Challenges »
Chelsea Finn · Thomas Dietterich · Angela Schoellig · Anca Dragan · Anusha Nagabandi · Doina Precup -
2020 : Keynote: Tom Diettrich »
Thomas Dietterich -
2020 : Invited Talk (Zico Kolter) »
J. Zico Kolter -
2020 Workshop: Machine Learning for Engineering Modeling, Simulation and Design »
Alex Beatson · Priya Donti · Amira Abdel-Rahman · Stephan Hoyer · Rose Yu · J. Zico Kolter · Ryan Adams -
2020 : Keynote by Zico Kolter »
J. Zico Kolter -
2020 Poster: Community detection using fast low-cardinality semidefinite programming
 »
Po-Wei Wang · J. Zico Kolter -
2020 Poster: Deep Archimedean Copulas »
Chun Kai Ling · Fei Fang · J. Zico Kolter -
2020 Tutorial: (Track3) Deep Implicit Layers: Neural ODEs, Equilibrium Models, and Differentiable Optimization Q&A »
David Duvenaud · J. Zico Kolter · Matthew Johnson -
2020 Poster: Efficient semidefinite-programming-based inference for binary and multi-class MRFs »
Chirag Pabbaraju · Po-Wei Wang · J. Zico Kolter -
2020 Spotlight: Efficient semidefinite-programming-based inference for binary and multi-class MRFs »
Chirag Pabbaraju · Po-Wei Wang · J. Zico Kolter -
2020 Poster: Multiscale Deep Equilibrium Models »
Shaojie Bai · Vladlen Koltun · J. Zico Kolter -
2020 Poster: Denoised Smoothing: A Provable Defense for Pretrained Classifiers »
Hadi Salman · Mingjie Sun · Greg Yang · Ashish Kapoor · J. Zico Kolter -
2020 Poster: Monotone operator equilibrium networks »
Ezra Winston · J. Zico Kolter -
2020 Spotlight: Monotone operator equilibrium networks »
Ezra Winston · J. Zico Kolter -
2020 Oral: Multiscale Deep Equilibrium Models »
Shaojie Bai · Vladlen Koltun · J. Zico Kolter -
2020 Tutorial: (Track3) Deep Implicit Layers: Neural ODEs, Equilibrium Models, and Differentiable Optimization »
David Duvenaud · J. Zico Kolter · Matthew Johnson -
2019 : AI and Sustainable Development »
Fei Fang · Carla Gomes · Miguel Luengo-Oroz · Thomas Dietterich · Julien Cornebise -
2019 : Automated Quality Control for a Weather Sensor Network »
Thomas Dietterich -
2019 Poster: Learning Stable Deep Dynamics Models »
J. Zico Kolter · Gaurav Manek -
2019 Poster: Adversarial Music: Real world Audio Adversary against Wake-word Detection System »
Juncheng Li · Shuhui Qu · Xinjian Li · Joseph Szurley · J. Zico Kolter · Florian Metze -
2019 Spotlight: Adversarial Music: Real world Audio Adversary against Wake-word Detection System »
Juncheng Li · Shuhui Qu · Xinjian Li · Joseph Szurley · J. Zico Kolter · Florian Metze -
2019 Poster: Differentiable Convex Optimization Layers »
Akshay Agrawal · Brandon Amos · Shane Barratt · Stephen Boyd · Steven Diamond · J. Zico Kolter -
2019 Poster: Uniform convergence may be unable to explain generalization in deep learning »
Vaishnavh Nagarajan · J. Zico Kolter -
2019 Poster: Deep Equilibrium Models »
Shaojie Bai · J. Zico Kolter · Vladlen Koltun -
2019 Spotlight: Deep Equilibrium Models »
Shaojie Bai · J. Zico Kolter · Vladlen Koltun -
2019 Oral: Uniform convergence may be unable to explain generalization in deep learning »
Vaishnavh Nagarajan · J. Zico Kolter -
2018 : Talk 1: Zico Kolter - Differentiable Physics and Control »
J. Zico Kolter -
2018 Poster: Differentiable MPC for End-to-end Planning and Control »
Brandon Amos · Ivan Jimenez · Jacob I Sacks · Byron Boots · J. Zico Kolter -
2018 Poster: End-to-End Differentiable Physics for Learning and Control »
Filipe de Avila Belbute Peres · Kevin Smith · Kelsey Allen · Josh Tenenbaum · J. Zico Kolter -
2018 Spotlight: End-to-End Differentiable Physics for Learning and Control »
Filipe de Avila Belbute Peres · Kevin Smith · Kelsey Allen · Josh Tenenbaum · J. Zico Kolter -
2018 Poster: Scaling provable adversarial defenses »
Eric Wong · Frank Schmidt · Jan Hendrik Metzen · J. Zico Kolter -
2018 Tutorial: Adversarial Robustness: Theory and Practice »
J. Zico Kolter · Aleksander Madry -
2017 : Provable defenses against adversarial examples via the convex outer adversarial polytope »
J. Zico Kolter -
2017 Poster: Gradient descent GAN optimization is locally stable »
Vaishnavh Nagarajan · J. Zico Kolter -
2017 Oral: Gradient descent GAN optimization is locally stable »
Vaishnavh Nagarajan · J. Zico Kolter -
2017 Poster: Task-based End-to-end Model Learning in Stochastic Optimization »
Priya Donti · J. Zico Kolter · Brandon Amos -
2016 : Automated Data Cleaning via Multi-View Anomaly Detection »
Thomas Dietterich -
2016 Poster: The Multiple Quantile Graphical Model »
Alnur Ali · J. Zico Kolter · Ryan Tibshirani -
2015 Symposium: Deep Learning Symposium »
Yoshua Bengio · Marc'Aurelio Ranzato · Honglak Lee · Max Welling · Andrew Y Ng -
2014 Workshop: 3rd NIPS Workshop on Probabilistic Programming »
Daniel Roy · Josh Tenenbaum · Thomas Dietterich · Stuart J Russell · YI WU · Ulrik R Beierholm · Alp Kucukelbir · Zenna Tavares · Yura Perov · Daniel Lee · Brian Ruttenberg · Sameer Singh · Michael Hughes · Marco Gaboardi · Alexey Radul · Vikash Mansinghka · Frank Wood · Sebastian Riedel · Prakash Panangaden -
2014 Workshop: From Bad Models to Good Policies (Sequential Decision Making under Uncertainty) »
Odalric-Ambrym Maillard · Timothy A Mann · Shie Mannor · Jeremie Mary · Laurent Orseau · Thomas Dietterich · Ronald Ortner · Peter GrĂĽnwald · Joelle Pineau · Raphael Fonteneau · Georgios Theocharous · Esteban D Arcaute · Christos Dimitrakakis · Nan Jiang · Doina Precup · Pierre-Luc Bacon · Marek Petrik · Aviv Tamar -
2014 Workshop: Deep Learning and Representation Learning »
Andrew Y Ng · Yoshua Bengio · Adam Coates · Roland Memisevic · Sharanyan Chetlur · Geoffrey E Hinton · Shamim Nemati · Bryan Catanzaro · Surya Ganguli · Herbert Jaeger · Phil Blunsom · Leon Bottou · Volodymyr Mnih · Chen-Yu Lee · Rich M Schwartz -
2013 Workshop: Machine Learning for Sustainability »
Edwin Bonilla · Thomas Dietterich · Theodoros Damoulas · Andreas Krause · Daniel Sheldon · Iadine Chades · J. Zico Kolter · Bistra Dilkina · Carla Gomes · Hugo P Simao -
2013 Demonstration: Easy Text Classification with Machine Learning »
Richard Socher · Romain Paulus · Bryan McCann · Andrew Y Ng -
2013 Poster: Reasoning With Neural Tensor Networks for Knowledge Base Completion »
Richard Socher · Danqi Chen · Christopher D Manning · Andrew Y Ng -
2013 Poster: Zero-Shot Learning Through Cross-Modal Transfer »
Richard Socher · Milind Ganjoo · Christopher D Manning · Andrew Y Ng -
2012 Workshop: Human Computation for Science and Computational Sustainability »
Theodoros Damoulas · Thomas Dietterich · Edith Law · Serge Belongie -
2012 Poster: Recursive Deep Learning on 3D Point Clouds »
Richard Socher · Bharath Bath · Brody Huval · Christopher D Manning · Andrew Y Ng -
2012 Poster: Deep Learning of invariant features via tracked video sequences »
Will Y Zou · Andrew Y Ng · Shenghuo Zhu · Kai Yu -
2012 Poster: Probabilistic Topic Coding for Superset Label Learning »
Liping Liu · Thomas Dietterich -
2012 Poster: Large Scale Distributed Deep Networks »
Jeff Dean · Greg Corrado · Rajat Monga · Kai Chen · Matthieu Devin · Quoc V Le · Mark Mao · Marc'Aurelio Ranzato · Andrew Senior · Paul Tucker · Ke Yang · Andrew Y Ng -
2012 Invited Talk: Challenges for Machine Learning in Computational Sustainability »
Thomas Dietterich -
2012 Poster: Emergence of Object-Selective Features in Unsupervised Feature Learning »
Adam Coates · Andrej Karpathy · Andrew Y Ng -
2011 Workshop: Challenges in Learning Hierarchical Models: Transfer Learning and Optimization »
Quoc V. Le · Marc'Aurelio Ranzato · Russ Salakhutdinov · Josh Tenenbaum · Andrew Y Ng -
2011 Workshop: Machine Learning for Sustainability »
Thomas Dietterich · J. Zico Kolter · Matthew A Brown -
2011 Workshop: Deep Learning and Unsupervised Feature Learning »
Yoshua Bengio · Adam Coates · Yann LeCun · Nicolas Le Roux · Andrew Y Ng -
2011 Poster: ICA with Reconstruction Cost for Efficient Overcomplete Feature Learning »
Quoc V. Le · Alexandre Karpenko · Jiquan Ngiam · Andrew Y Ng -
2011 Poster: Unfolding Recursive Autoencoders for Paraphrase Detection »
Richard Socher · Eric H Huang · Jeffrey Pennin · Andrew Y Ng · Christopher D Manning -
2011 Poster: Sparse Filtering »
Jiquan Ngiam · Pang Wei Koh · Zhenghao Chen · Sonia A Bhaskar · Andrew Y Ng -
2011 Spotlight: Sparse Filtering »
Jiquan Ngiam · Pang Wei Koh · Zhenghao Chen · Sonia A Bhaskar · Andrew Y Ng -
2011 Poster: The Fixed Points of Off-Policy TD »
J. Zico Kolter -
2011 Demonstration: Haptic Belt with Pedestrian Detection »
Jean Feng · Marc Rasi · Andrew Y Ng · Quoc V. Le · Morgan Quigley · Justin K Chen · Tiffany Low · Will Y Zou -
2011 Spotlight: The Fixed Points of Off-Policy TD »
J. Zico Kolter -
2011 Poster: Collective Graphical Models »
Daniel Sheldon · Thomas Dietterich -
2011 Poster: Inverting Grice's Maxims to Learn Rules from Natural Language Extractions »
M. Shahed Sorower · Thomas Dietterich · Janardhan Rao Doppa · Walker Orr · Prasad Tadepalli · Xiaoli Fern -
2011 Poster: Selecting Receptive Fields in Deep Networks »
Adam Coates · Andrew Y Ng -
2011 Poster: Unsupervised learning models of primary cortical receptive fields and receptive field plasticity »
Andrew M Saxe · Maneesh Bhand · Ritvik Mudur · Bipin Suresh · Andrew Y Ng -
2010 Workshop: Deep Learning and Unsupervised Feature Learning »
Honglak Lee · Marc'Aurelio Ranzato · Yoshua Bengio · Geoffrey E Hinton · Yann LeCun · Andrew Y Ng -
2010 Poster: Tiled convolutional neural networks »
Quoc V. Le · Jiquan Ngiam · Zhenghao Chen · Daniel Jin hao Chia · Pang Wei Koh · Andrew Y Ng -
2010 Poster: Energy Disaggregation via Discriminative Sparse Coding »
J. Zico Kolter · Siddarth Batra · Andrew Y Ng -
2009 Poster: Measuring Invariances in Deep Networks »
Ian Goodfellow · Quoc V. Le · Andrew M Saxe · Andrew Y Ng -
2009 Poster: Unsupervised feature learning for audio classification using convolutional deep belief networks »
Honglak Lee · Peter Pham · Yan Largman · Andrew Y Ng -
2008 Demonstration: High-Accuracy 3D Sensing for Mobile Manipulators »
Stephen Gould · Morgan Quigley · Siddarth Batra · Ellen Klingbiel · Quoc V Le · Andrew Y Ng -
2007 Poster: Sparse deep belief net model for visual area V2 »
Honglak Lee · Ekanadham Chaitanya · Andrew Y Ng -
2007 Demonstration: Holistic Scene Understanding from Visual and Range Data »
Stephen Gould · Morgan Quigley · Andrew Y Ng · Daphne Koller -
2007 Spotlight: Hierarchical Apprenticeship Learning with Application to Quadruped Locomotion »
J. Zico Kolter · Pieter Abbeel · Andrew Y Ng -
2007 Poster: Hierarchical Apprenticeship Learning with Application to Quadruped Locomotion »
J. Zico Kolter · Pieter Abbeel · Andrew Y Ng -
2007 Demonstration: Building a 3-D Model From a Single Still Image »
Ashutosh Saxena · min sun · Andrew Y Ng -
2007 Poster: Efficient multiple hyperparameter learning for log-linear models »
Chuong B Do · Chuan-Sheng Foo · Andrew Y Ng -
2006 Demonstration: Peripheral-Foveal Vision for Real-time Object Recognition »
Benjamin Sapp · Stephen Gould · Adrian Kaehler · Gary R Bradski · Andrew Y Ng -
2006 Poster: Robotic Grasping of Novel Objects »
Ashutosh Saxena · Justin Driemeyer · Justin Kearns · Andrew Y Ng -
2006 Poster: Map-Reduce for Machine Learning on Multicore »
Cheng-Tao Chu · Sang Kyun Kim · Yi-An Lin · YuanYuan Yu · Gary R Bradski · Andrew Y Ng · Kunle Olukotun -
2006 Poster: An Application of Reinforcement Learning to Aerobatic Helicopter Flight »
Pieter Abbeel · Adam P Coates · Andrew Y Ng · Morgan Quigley -
2006 Talk: Map-Reduce for Machine Learning on Multicore »
Cheng-Tao Chu · Sang Kyun Kim · Yi-An Lin · YuanYuan Yu · Gary R Bradski · Andrew Y Ng · Kunle Olukotun -
2006 Spotlight: Robotic Grasping of Novel Objects »
Ashutosh Saxena · Justin Driemeyer · Justin Kearns · Andrew Y Ng -
2006 Talk: An Application of Reinforcement Learning to Aerobatic Helicopter Flight »
Pieter Abbeel · Adam P Coates · Andrew Y Ng · Morgan Quigley -
2006 Poster: Efficient sparse coding algorithms, end-stopping and nCRF surround suppression »
Honglak Lee · Alexis Battle · Raina Rajat · Andrew Y Ng