Timezone: »
This symposium addresses a topic that has spurred vigorous scientific
debate of late in the fields of neuroscience and machine learning:
causality in time-series data. In neuroscience, causal inference in
brain signal activity (EEG, MEG, fMRI, etc.) is challenged by
relatively rough prior knowledge of brain connectivity and by sensor
limitations (mixing of sources). On the machine learning side, as the
Causality workshop last year’s NIPS conference has evidenced for
static (non-time series) data, there are issues of whether or not
graphical models (directed acyclic graphs) pioneered by Judea Pearl,
Peter Spirtes, and others can reliably provide a cornerstone of causal
inference, whereas in neuroscience there are issues of whether Granger
type causality inference is appropriate given the source mixing
problem, traditionally addressed by ICA methods. Further topics, yet
to be fully explored, are non-linearity, non-Gaussianity and full
causal graph inference in high-dimensional time series data. Many
ideas in causality research have been developed by and are of direct
interest and relevance to researchers from fields beyond ML and
neuroscience: economics (i.e. the Nobel Prize winning work of the late
Clive Granger, which we will pay tribute to), process and controls
engineering, sociology, etc. Despite the long-standing challenges of
time-series causality, both theoretical and computational, the recent
emergence of cornerstone developments and efficient computational
learning methods all point to the likely growth of activity in this
seminal topic.
Along with the stimulating discussion of recent research on time-
series causality, we will present and highlight time-series datasets
added to the Causality Workbench, which have grown out of last year’s
Causality challenge and NIPS workshop, some of which are neuroscience
related.
Author Information
Florin Popescu (Fraunhofer FIRST)
Isabelle Guyon (Google and ChaLearn)
Isabelle Guyon recently joined Google Brain as a research scientist. She is also professor of artificial intelligence at Université Paris-Saclay (Orsay). Her areas of expertise include computer vision, bioinformatics, and power systems. She is best known for being a co-inventor of Support Vector Machines. Her recent interests are in automated machine learning, meta-learning, and data-centric AI. She has been a strong promoter of challenges and benchmarks, and is president of ChaLearn, a non-profit dedicated to organizing machine learning challenges. She is community lead of Codalab competitions, a challenge platform used both in academia and industry. She co-organized the “Challenges in Machine Learning Workshop” @ NeurIPS between 2014 and 2019, launched the "NeurIPS challenge track" in 2017 while she was general chair, and pushed the creation of the "NeurIPS datasets and benchmark track" in 2021, as a NeurIPS board member.
Guido Nolte
More from the Same Authors
-
2022 : Fifteen-minute Competition Overview Video »
Dustin Carrión-Ojeda · Ihsan Ullah · Sergio Escalera · Isabelle Guyon · Felix Mohr · Manh Hung Nguyen · Joaquin Vanschoren -
2022 Competition: Cross-Domain MetaDL: Any-Way Any-Shot Learning Competition with Novel Datasets from Practical Domains »
Dustin Carrión-Ojeda · Ihsan Ullah · Sergio Escalera · Isabelle Guyon · Felix Mohr · Manh Hung Nguyen · Joaquin Vanschoren -
2022 Poster: Meta-Album: Multi-domain Meta-Dataset for Few-Shot Image Classification »
Ihsan Ullah · Dustin Carrión-Ojeda · Sergio Escalera · Isabelle Guyon · Mike Huisman · Felix Mohr · Jan N. van Rijn · Haozhe Sun · Joaquin Vanschoren · Phan Anh Vu -
2022 : Isabelle Guyon »
Isabelle Guyon -
2022 Invited Talk: The Data-Centric Era: How ML is Becoming an Experimental Science »
Isabelle Guyon -
2021 Panel: The Role of Benchmarks in the Scientific Progress of Machine Learning »
Lora Aroyo · Samuel Bowman · Isabelle Guyon · Joaquin Vanschoren -
2020 Poster: Deep Statistical Solvers »
Balthazar Donon · Zhengying Liu · Wenzhuo LIU · Isabelle Guyon · Antoine Marot · Marc Schoenauer -
2019 : Welcome and Opening Remarks »
Adrienne Mendrik · Wei-Wei Tu · Isabelle Guyon · Evelyne Viegas · Ming LI -
2018 : Afternoon Welcome - Isabelle Guyon and Evelyne Viegas »
Isabelle Guyon -
2018 Workshop: CiML 2018 - Machine Learning competitions "in the wild": Playing in the real world or in real time »
Isabelle Guyon · Evelyne Viegas · Sergio Escalera · Jacob D Abernethy -
2018 : Datasets and Benchmarks for Causal Learning »
Csaba Szepesvari · Isabelle Guyon · Nicolai Meinshausen · David Blei · Elias Bareinboim · Bernhard Schölkopf · Pietro Perona -
2018 : AutoML3 - LifeLong ML with concept drift Challenge: Overview and award ceremony »
Hugo Jair Escalante · Isabelle Guyon · Daniel Silver · Evelyne Viegas · Wei-Wei Tu -
2018 : Evaluating Causation Coefficients »
Isabelle Guyon -
2017 Workshop: Machine Learning Challenges as a Research Tool »
Isabelle Guyon · Evelyne Viegas · Sergio Escalera · Jacob D Abernethy -
2017 : Introduction - Isabelle Guyon and Evelyne Viegas »
Isabelle Guyon -
2016 Workshop: Machine Learning for Spatiotemporal Forecasting »
Florin Popescu · Sergio Escalera · Xavier Baró · Stephane Ayache · Isabelle Guyon -
2016 : Gaming challenges and encouraging collaborations »
Sergio Escalera · Isabelle Guyon -
2016 Workshop: Challenges in Machine Learning: Gaming and Education »
Isabelle Guyon · Evelyne Viegas · Balázs Kégl · Ben Hamner · Sergio Escalera -
2016 Demonstration: Biometric applications of CNNs: get a job at "Impending Technologies"! »
Sergio Escalera · Isabelle Guyon · Baiyu Chen · Marc Quintana · Umut Güçlü · Yağmur Güçlütürk · Xavier Baró · Rob van Lier · Carlos Andujar · Marcel A. J. van Gerven · Bernhard E Boser · Luke Wang -
2015 Workshop: Challenges in Machine Learning (CiML 2015): "Open Innovation" and "Coopetitions" »
Isabelle Guyon · Evelyne Viegas · Ben Hamner · Balázs Kégl -
2014 Workshop: High-energy particle physics, machine learning, and the HiggsML data challenge (HEPML) »
Glen Cowan · Balázs Kégl · Kyle Cranmer · Gábor Melis · Tim Salimans · Vladimir Vava Gligorov · Daniel Whiteson · Lester Mackey · Wojciech Kotlowski · Roberto Díaz Morales · Pierre Baldi · Cecile Germain · David Rousseau · Isabelle Guyon · Tianqi Chen -
2014 Workshop: Challenges in Machine Learning workshop (CiML 2014) »
Isabelle Guyon · Evelyne Viegas · Percy Liang · Olga Russakovsky · Rinat Sergeev · Gábor Melis · Michele Sebag · Gustavo Stolovitzky · Jaume Bacardit · Michael S Kim · Ben Hamner -
2013 Workshop: NIPS 2013 Workshop on Causality: Large-scale Experiment Design and Inference of Causal Mechanisms »
Isabelle Guyon · Leon Bottou · Bernhard Schölkopf · Alexander Statnikov · Evelyne Viegas · james m robins -
2012 Demonstration: Gesture recognition with Kinect »
Isabelle Guyon -
2009 Workshop: Clustering: Science or art? Towards principled approaches »
Margareta Ackerman · Shai Ben-David · Avrim Blum · Isabelle Guyon · Ulrike von Luxburg · Robert Williamson · Reza Zadeh -
2009 Poster: Subject independent EEG-based BCI decoding »
Siamac Fazli · Cristian Grozea · Márton Danóczy · Benjamin Blankertz · Florin Popescu · Klaus-Robert Müller -
2009 Spotlight: Subject independent EEG-based BCI decoding »
Siamac Fazli · Cristian Grozea · Márton Danóczy · Benjamin Blankertz · Florin Popescu · Klaus-Robert Müller -
2009 Demonstration: Causality Workbench »
Isabelle Guyon -
2008 Workshop: Causality: objectives and assessment »
Isabelle Guyon · Dominik Janzing · Bernhard Schölkopf -
2008 Demonstration: Play Brain-Pong in 10 Minutes »
Cristian Grozea · Siamac Fazli · Márton Danóczy · Florin Popescu -
2008 Poster: Estimating vector fields using sparse basis field expansions »
Stefan Haufe · Vadim Nikulin · Andreas Ziehe · Klaus-Robert Müller · Guido Nolte -
2007 Demonstration: CLOP: a Matlab Learning Object Package »
Amir Reza Saffari Azar Alamdari · Isabelle Guyon · Hugo Jair Escalante · Gökhan H Bakir · Gavin Cawley -
2006 Workshop: Multi-level Inference Workshop and Model Selection Game »
Isabelle Guyon