Timezone: »

 
Poster
Regularized Co-Clustering with Dual Supervision
Vikas Sindhwani · Jianying Hu · Aleksandra Mojsilovic

Mon Dec 08 08:45 PM -- 12:00 AM (PST) @

By attempting to simultaneously partition both the rows (examples) and columns (features) of a data matrix, Co-clustering algorithms often demonstrate surpris- ingly impressive performance improvements over traditional one-sided (row) clustering techniques. A good clustering of features may be seen as a combinatorial transformation of the data matrix, effectively enforcing a form of regularization that may lead to a better clustering of examples (and vice-versa). In many applications, partial supervision in the form of a few row labels as well as column labels may be available to potentially assist co-clustering. In this paper, we develop two novel semi-supervised multi-class classification algorithms motivated respectively by spectral bipartite graph partitioning and matrix approximation (e.g., non-negative matrix factorization) formulations for co-clustering. These algorithms (i) support dual supervision in the form of labels for both examples and/or features, (ii) provide principled predictive capability on out-of-sample test data, and (iii) arise naturally from the classical Representer theorem applied to regularization problems posed on a collection of Reproducing Kernel Hilbert Spaces. Empirical results demonstrate the effectiveness and utility of our algorithms.

Author Information

Vikas Sindhwani (Google)
Jianying Hu (IBM)
Aleksandra Mojsilovic (IBM Research)

More from the Same Authors