Timezone: »
We explore a recently proposed mixture model approach to understanding interactions between conflicting sensory cues. Alternative model formulations, differing in their sensory noise models and inference methods, are compared based on their fit to experimental data. Heavy-tailed sensory likelihoods yield a better description of the interesting response behavior than standard Gaussian noise models. We study the underlying case for this result, and then present several testable predictions of these models.
Author Information
Rama Natarajan (University of Toronto)
Iain Murray (University of Edinburgh)
Iain Murray is a SICSA Lecturer in Machine Learning at the University of Edinburgh. Iain was introduced to machine learning by David MacKay and Zoubin Ghahramani, both previous NIPS tutorial speakers. He obtained his PhD in 2007 from the Gatsby Computational Neuroscience Unit at UCL. His thesis on Monte Carlo methods received an honourable mention for the ISBA Savage Award. He was a commonwealth fellow in Machine Learning at the University of Toronto, before moving to Edinburgh in 2010. Iain's research interests include building flexible probabilistic models of data, and probabilistic inference from indirect and uncertain observations. Iain is passionate about teaching. He has lectured at several Summer schools, is listed in the top 15 authors on videolectures.net, and was awarded the EUSA Van Heyningen Award for Teaching in Science and Engineering in 2015.
Ladan Shams (UCLA, Caltech)
Richard Zemel (Columbia University)
More from the Same Authors
-
2021 Spotlight: Maximum Likelihood Training of Score-Based Diffusion Models »
Yang Song · Conor Durkan · Iain Murray · Stefano Ermon -
2021 : Understanding Post-hoc Adaptation for Improving Subgroup Robustness »
David Madras · Richard Zemel -
2021 : Amortized Causal Discovery: Learning to Infer Causal Graphs from Time-Series Data »
Sindy Löwe · David Madras · Richard Zemel · Max Welling -
2022 Poster: Implications of Model Indeterminacy for Explanations of Automated Decisions »
Marc-Etienne Brunet · Ashton Anderson · Richard Zemel -
2022 Poster: Deep Ensembles Work, But Are They Necessary? »
Taiga Abe · Estefany Kelly Buchanan · Geoff Pleiss · Richard Zemel · John Cunningham -
2021 Poster: Maximum Likelihood Training of Score-Based Diffusion Models »
Yang Song · Conor Durkan · Iain Murray · Stefano Ermon -
2021 Poster: Variational Model Inversion Attacks »
Kuan-Chieh Wang · YAN FU · Ke Li · Ashish Khisti · Richard Zemel · Alireza Makhzani -
2021 Poster: Identifying and Benchmarking Natural Out-of-Context Prediction Problems »
David Madras · Richard Zemel -
2020 : Contributed talks 5: Fairness and Robustness in Invariant Learning: A Case Study in Toxicity Classification »
Elliot Creager · David Madras · Richard Zemel -
2019 Poster: Incremental Few-Shot Learning with Attention Attractor Networks »
Mengye Ren · Renjie Liao · Ethan Fetaya · Richard Zemel -
2019 Poster: Neural Spline Flows »
Conor Durkan · Artur Bekasov · Iain Murray · George Papamakarios -
2019 Poster: SMILe: Scalable Meta Inverse Reinforcement Learning through Context-Conditional Policies »
Kamyar Ghasemipour · Shixiang (Shane) Gu · Richard Zemel -
2019 Poster: Efficient Graph Generation with Graph Recurrent Attention Networks »
Renjie Liao · Yujia Li · Yang Song · Shenlong Wang · Will Hamilton · David Duvenaud · Raquel Urtasun · Richard Zemel -
2018 Poster: Learning Latent Subspaces in Variational Autoencoders »
Jack Klys · Jake Snell · Richard Zemel -
2018 Poster: Predict Responsibly: Improving Fairness and Accuracy by Learning to Defer »
David Madras · Toni Pitassi · Richard Zemel -
2018 Poster: Neural Guided Constraint Logic Programming for Program Synthesis »
Lisa Zhang · Gregory Rosenblatt · Ethan Fetaya · Renjie Liao · William Byrd · Matthew Might · Raquel Urtasun · Richard Zemel -
2017 : Panel session »
Iain Murray · Max Welling · Juan Carrasquilla · Anatole von Lilienfeld · Gilles Louppe · Kyle Cranmer -
2017 : Contributed talk: Predict Responsibly: Increasing Fairness by Learning To Defer Abstract »
David Madras · Richard Zemel · Toni Pitassi -
2017 : Invited talk 3: Learning priors, likelihoods, or posteriors »
Iain Murray -
2017 : Invited talk: Iain Murray (TBA) »
Iain Murray -
2017 Oral: Masked Autoregressive Flow for Density Estimation »
George Papamakarios · Iain Murray · Theo Pavlakou -
2017 Poster: Masked Autoregressive Flow for Density Estimation »
George Papamakarios · Iain Murray · Theo Pavlakou -
2017 Poster: Dualing GANs »
Yujia Li · Alex Schwing · Kuan-Chieh Wang · Richard Zemel -
2017 Poster: Causal Effect Inference with Deep Latent-Variable Models »
Christos Louizos · Uri Shalit · Joris Mooij · David Sontag · Richard Zemel · Max Welling -
2017 Spotlight: Dualing GANs »
Yujia Li · Alex Schwing · Kuan-Chieh Wang · Richard Zemel -
2017 Poster: Few-Shot Learning Through an Information Retrieval Lens »
Eleni Triantafillou · Richard Zemel · Raquel Urtasun -
2017 Poster: Prototypical Networks for Few-shot Learning »
Jake Snell · Kevin Swersky · Richard Zemel -
2016 Poster: Fast ε-free Inference of Simulation Models with Bayesian Conditional Density Estimation »
George Papamakarios · Iain Murray -
2016 Poster: Understanding the Effective Receptive Field in Deep Convolutional Neural Networks »
Wenjie Luo · Yujia Li · Raquel Urtasun · Richard Zemel -
2016 Poster: Learning Deep Parsimonious Representations »
Renjie Liao · Alex Schwing · Richard Zemel · Raquel Urtasun -
2015 Poster: Skip-Thought Vectors »
Jamie Kiros · Yukun Zhu · Russ Salakhutdinov · Richard Zemel · Raquel Urtasun · Antonio Torralba · Sanja Fidler -
2015 Poster: Exploring Models and Data for Image Question Answering »
Mengye Ren · Jamie Kiros · Richard Zemel -
2015 Tutorial: Monte Carlo Inference Methods »
Iain Murray -
2014 Workshop: Representation and Learning Methods for Complex Outputs »
Richard Zemel · Dale Schuurmans · Kilian Q Weinberger · Yuhong Guo · Jia Deng · Francesco Dinuzzo · Hal Daumé III · Honglak Lee · Noah A Smith · Richard Sutton · Jiaqian YU · Vitaly Kuznetsov · Luke Vilnis · Hanchen Xiong · Calvin Murdock · Thomas Unterthiner · Jean-Francis Roy · Martin Renqiang Min · Hichem SAHBI · Fabio Massimo Zanzotto -
2014 Poster: A Multiplicative Model for Learning Distributed Text-Based Attribute Representations »
Jamie Kiros · Richard Zemel · Russ Salakhutdinov -
2013 Workshop: Output Representation Learning »
Yuhong Guo · Dale Schuurmans · Richard Zemel · Samy Bengio · Yoshua Bengio · Li Deng · Dan Roth · Kilian Q Weinberger · Jason Weston · Kihyuk Sohn · Florent Perronnin · Gabriel Synnaeve · Pablo R Strasser · julien audiffren · Carlo Ciliberto · Dan Goldwasser -
2013 Poster: A Determinantal Point Process Latent Variable Model for Inhibition in Neural Spiking Data »
Jasper Snoek · Richard Zemel · Ryan Adams -
2013 Poster: RNADE: The real-valued neural autoregressive density-estimator »
Benigno Uria · Iain Murray · Hugo Larochelle -
2013 Poster: On the Expressive Power of Restricted Boltzmann Machines »
James Martens · Arkadev Chattopadhya · Toni Pitassi · Richard Zemel -
2012 Poster: Collaborative Ranking With 17 Parameters »
Maksims Volkovs · Richard Zemel -
2012 Poster: Bayesian n-Choose-k Models for Classification and Ranking »
Kevin Swersky · Danny Tarlow · Richard Zemel · Ryan Adams · Brendan J Frey -
2012 Poster: Efficient Sampling for Bipartite Matching Problems »
Maksims Volkovs · Richard Zemel -
2012 Poster: Cardinality Restricted Boltzmann Machines »
Kevin Swersky · Danny Tarlow · Ilya Sutskever · Richard Zemel · Russ Salakhutdinov · Ryan Adams -
2011 Poster: How biased are maximum entropy models? »
Jakob H Macke · Iain Murray · Peter E Latham -
2010 Workshop: Monte Carlo Methods for Bayesian Inference in Modern Day Applications »
Ryan Adams · Mark A Girolami · Iain Murray -
2010 Oral: Slice sampling covariance hyperparameters of latent Gaussian models »
Iain Murray · Ryan Adams -
2010 Poster: Slice sampling covariance hyperparameters of latent Gaussian models »
Iain Murray · Ryan Adams -
2010 Session: Spotlights Session 5 »
Iain Murray -
2010 Session: Oral Session 5 »
Iain Murray -
2010 Talk: Opening Remarks and Awards »
Richard Zemel · Terrence Sejnowski · John Shawe-Taylor -
2009 Placeholder: Opening Remarks »
Richard Zemel -
2008 Poster: The Gaussian Process Density Sampler »
Ryan Adams · Iain Murray · David MacKay -
2008 Poster: Learning Hybrid Models for Image Annotation with Partially Labeled Data »
Xuming He · Richard Zemel -
2008 Spotlight: The Gaussian Process Density Sampler »
Ryan Adams · Iain Murray · David MacKay -
2008 Poster: Evaluating probabilities under high-dimensional latent variable models »
Iain Murray · Russ Salakhutdinov -
2008 Poster: Competing RBM density models for classification of fMRI images »
Tanya Schmah · Geoffrey E Hinton · Richard Zemel -
2008 Spotlight: Evaluating probabilities under high-dimensional latent variable models »
Iain Murray · Russ Salakhutdinov -
2007 Spotlight: Comparing Bayesian models for multisensory cue combination without mandatory integration »
Ulrik Beierholm · Konrad P Kording · Ladan Shams · Wei Ji Ma -
2007 Poster: Comparing Bayesian models for multisensory cue combination without mandatory integration »
Ulrik Beierholm · Konrad P Kording · Ladan Shams · Wei Ji Ma