Timezone: »
Poster
Unsupervised Bayesian Parameter Estimation for Probabilistic Grammars
Shay Cohen · Kevin Gimpel · Noah A Smith
In this paper we explore Bayesian approaches for the unsupervised estimation of probabilistic grammars, a family of distributions over discrete structures that includes hidden Markov models and probabilistic context-free grammars. We consider the use of Dirichlet priors, and we extend the correlated topic model framework to probabilistic grammars and derive a variational EM algorithm for efficient approximate inference. We experiment with the task of unsupervised grammar induction for natural language dependency parsing, and show that superior results can be achieved when using a logistic normal prior over probabilistic grammars.
Author Information
Shay Cohen (Columbia University)
Kevin Gimpel (Carnegie Mellon University)
Noah A Smith (Carnegie Mellon University)
More from the Same Authors
-
2016 Poster: Constraints Based Convex Belief Propagation »
Yaniv Tenzer · Alex Schwing · Kevin Gimpel · Tamir Hazan -
2014 Workshop: Representation and Learning Methods for Complex Outputs »
Richard Zemel · Dale Schuurmans · Kilian Q Weinberger · Yuhong Guo · Jia Deng · Francesco Dinuzzo · Hal Daumé III · Honglak Lee · Noah A Smith · Richard Sutton · Jiaqian YU · Vitaly Kuznetsov · Luke Vilnis · Hanchen Xiong · Calvin Murdock · Thomas Unterthiner · Jean-Francis Roy · Martin Renqiang Min · Hichem SAHBI · Fabio Massimo Zanzotto -
2014 Poster: Conditional Random Field Autoencoders for Unsupervised Structured Prediction »
Waleed Ammar · Chris Dyer · Noah A Smith -
2014 Oral: Conditional Random Field Autoencoders for Unsupervised Structured Prediction »
Waleed Ammar · Chris Dyer · Noah A Smith -
2012 Poster: Tensor Decomposition for Fast Parsing with Latent-Variable PCFGs »
Shay Cohen · Michael Collins -
2010 Poster: Empirical Risk Minimization with Approximations of Probabilistic Grammars »
Shay Cohen · Noah A Smith