Timezone: »
Poster
Modeling human function learning with Gaussian processes
Tom Griffiths · Chris Lucas · Joseph Jay Williams · Michael Kalish
Accounts of how people learn functional relationships between continuous variables have tended to focus on two possibilities: that people are estimating explicit functions, or that they are simply performing associative learning supported by similarity. We provide a rational analysis of function learning, drawing on work on regression in machine learning and statistics. Using the equivalence of Bayesian linear regression and Gaussian processes, we show that learning explicit rules and using similarity can be seen as two views of one solution to this problem. We use this insight to define a Gaussian process model of human function learning that combines the strengths of both approaches.
Author Information
Tom Griffiths (Princeton)
Chris Lucas (UC Berkeley)
Joseph Jay Williams
Michael Kalish (ICS)
More from the Same Authors
-
2018 : Research Panel »
Sinead Williamson · Barbara Engelhardt · Tom Griffiths · Neil Lawrence · Hanna Wallach -
2017 : Revealing human inductive biases and metacognitive processes with rational models »
Tom Griffiths -
2017 Poster: A graph-theoretic approach to multitasking »
Noga Alon · Daniel Reichman · Igor Shinkar · Tal Wagner · Sebastian Musslick · Jonathan D Cohen · Tom Griffiths · Biswadip dey · Kayhan Ozcimder -
2017 Oral: A graph-theoretic approach to multitasking »
Noga Alon · Daniel Reichman · Igor Shinkar · Tal Wagner · Sebastian Musslick · Jonathan D Cohen · Tom Griffiths · Biswadip dey · Kayhan Ozcimder -
2016 : Bounded Optimality and Rational Metareasoning in Human Cognition »
Tom Griffiths -
2015 Workshop: Bounded Optimality and Rational Metareasoning »
Samuel J Gershman · Falk Lieder · Tom Griffiths · Noah Goodman -
2014 Poster: Algorithm selection by rational metareasoning as a model of human strategy selection »
Falk Lieder · Dillon Plunkett · Jessica B Hamrick · Stuart J Russell · Nicholas Hay · Tom Griffiths -
2013 Poster: Visual Concept Learning: Combining Machine Vision and Bayesian Generalization on Concept Hierarchies »
Yangqing Jia · Joshua T Abbott · Joseph L Austerweil · Tom Griffiths · Trevor Darrell -
2012 Poster: Human memory search as a random walk in a semantic network »
Joshua T Abbott · Joseph L Austerweil · Tom Griffiths -
2012 Spotlight: Human memory search as a random walk in a semantic network »
Joshua T Abbott · Joseph L Austerweil · Tom Griffiths -
2012 Poster: Burn-in, bias, and the rationality of anchoring »
Falk Lieder · Tom Griffiths · Noah Goodman -
2011 Poster: A rational model of causal inference with continuous causes »
M Pacer · Tom Griffiths -
2011 Poster: An ideal observer model for identifying the reference frame of objects »
Joseph L Austerweil · Abram Friesen · Tom Griffiths -
2011 Poster: Testing a Bayesian Measure of Representativeness Using a Large Image Database »
Joshua T Abbott · Katherine Heller · Zoubin Ghahramani · Tom Griffiths -
2010 Workshop: Transfer Learning Via Rich Generative Models. »
Russ Salakhutdinov · Ryan Adams · Josh Tenenbaum · Zoubin Ghahramani · Tom Griffiths -
2010 Spotlight: Learning invariant features using the Transformed Indian Buffet Process »
Joseph L Austerweil · Tom Griffiths -
2010 Poster: Learning invariant features using the Transformed Indian Buffet Process »
Joseph L Austerweil · Tom Griffiths -
2009 Workshop: Bounded-rational analyses of human cognition: Bayesian models, approximate inference, and the brain »
Noah Goodman · Edward Vul · Tom Griffiths · Josh Tenenbaum -
2009 Poster: Neural Implementation of Hierarchical Bayesian Inference by Importance Sampling »
Lei ShiUpdateMe · Tom Griffiths -
2009 Spotlight: Neural Implementation of Hierarchical Bayesian Inference by Importance Sampling »
Lei ShiUpdateMe · Tom Griffiths -
2009 Poster: Differential Use of Implicit Negative Evidence in Generative and Discriminative Language Learning »
Anne Hsu · Tom Griffiths -
2009 Oral: Differential Use of Implicit Negative Evidence in Generative and Discriminative Language Learning »
Anne Hsu · Tom Griffiths -
2009 Poster: Nonparametric Latent Feature Models for Link Prediction »
Kurt T Miller · Tom Griffiths · Michael Jordan -
2009 Spotlight: Nonparametric Latent Feature Models for Link Prediction »
Kurt T Miller · Tom Griffiths · Michael Jordan -
2008 Workshop: Machine learning meets human learning »
Nathaniel D Daw · Tom Griffiths · Josh Tenenbaum · Jerry Zhu -
2008 Poster: Modeling the effects of memory on human online sentence processing with particle filters »
Roger Levy · Florencia Reali · Tom Griffiths -
2008 Oral: Modeling the effects of memory on human online sentence processing with particle filters »
Roger Levy · Florencia Reali · Tom Griffiths -
2008 Poster: How memory biases affect information transmission: A rational analysis of serial reproduction »
Jing Xu · Tom Griffiths -
2008 Poster: Analyzing human feature learning as nonparametric Bayesian inference »
Joseph L Austerweil · Tom Griffiths -
2008 Poster: A rational model of preference learning and choice prediction by children »
Chris Lucas · Tom Griffiths · Fei Xu · Christine Fawcett -
2008 Spotlight: Analyzing human feature learning as nonparametric Bayesian inference »
Joseph L Austerweil · Tom Griffiths -
2008 Spotlight: A rational model of preference learning and choice prediction by children »
Chris Lucas · Tom Griffiths · Fei Xu · Christine Fawcett -
2008 Spotlight: How memory biases affect information transmission: A rational analysis of serial reproduction »
Jing Xu · Tom Griffiths -
2007 Oral: Markov Chain Monte Carlo with People »
Adam Sanborn · Tom Griffiths -
2007 Poster: Markov Chain Monte Carlo with People »
Adam Sanborn · Tom Griffiths -
2007 Poster: A Probabilistic Approach to Language Change »
Alexandre Bouchard-Côté · Percy Liang · Tom Griffiths · Dan Klein -
2006 Poster: Particle Filtering for Nonparametric Bayesian Matrix Factorization »
Frank Wood · Tom Griffiths -
2006 Poster: Adaptor Grammars: A Framework for Specifying Compositional Nonparametric Bayesian Mod »
Mark Johnson · Tom Griffiths · Sharon Goldwater -
2006 Poster: A Nonparametric Bayesian Method for Inferring Features From Similarity Judgments »
Daniel Navarro · Tom Griffiths