Timezone: »

Diffeomorphic Dimensionality Reduction
Christian Walder · Bernhard Schölkopf

Mon Dec 08 08:45 PM -- 12:00 AM (PST) @

This paper introduces a new approach to constructing meaningful lower dimensional representations of sets of data points. We argue that constraining the mapping between the high and low dimensional spaces to be a diffeomorphism is a natural way of ensuring that pairwise distances are approximately preserved. Accordingly we develop an algorithm which diffeomorphically maps the data near to a lower dimensional subspace and then projects onto that subspace. The problem of solving for the mapping is transformed into one of solving for an Eulerian flow field which we compute using ideas from kernel methods. We demonstrate the efficacy of our approach on various real world data sets.

Author Information

Christian Walder (Max Planck Institute)
Bernhard Schölkopf (MPI for Intelligent Systems, Tübingen)

Bernhard Scholkopf received degrees in mathematics (London) and physics (Tubingen), and a doctorate in computer science from the Technical University Berlin. He has researched at AT&T Bell Labs, at GMD FIRST, Berlin, at the Australian National University, Canberra, and at Microsoft Research Cambridge (UK). In 2001, he was appointed scientific member of the Max Planck Society and director at the MPI for Biological Cybernetics; in 2010 he founded the Max Planck Institute for Intelligent Systems. For further information, see www.kyb.tuebingen.mpg.de/~bs.

More from the Same Authors