Timezone: »

 
Poster
A mixture model for the evolution of gene expression in non-homogeneous datasets
Gerald Quon · Yee Whye Teh · Esther Chan · Michael Brudno · Tim Hughes · Quaid Morris

Tue Dec 09 07:30 PM -- 12:00 AM (PST) @

We address the challenge of assessing conservation of gene expression in complex, non-homogeneous datasets. Recent studies have demonstrated the success of probabilistic models in studying the evolution of gene expression in simple eukaryotic organisms such as yeast, for which measurements are typically scalar and independent. Models capable of studying expression evolution in much more complex organisms such as vertebrates are particularly important given the medical and scientific interest in species such as human and mouse. We present a statistical model that makes a number of significant extensions to previous models to enable characterization of changes in expression among highly complex organisms. We demonstrate the efficacy of our method on a microarray dataset containing diverse tissues from multiple vertebrate species. We anticipate that the model will be invaluable in the study of gene expression patterns in other diverse organisms as well, such as worms and insects.

Author Information

Gerald Quon (University of California, Davis)
Yee Whye Teh (University of Oxford, DeepMind)

I am a Professor of Statistical Machine Learning at the Department of Statistics, University of Oxford and a Research Scientist at DeepMind. I am also an Alan Turing Institute Fellow and a European Research Council Consolidator Fellow. I obtained my Ph.D. at the University of Toronto (working with Geoffrey Hinton), and did postdoctoral work at the University of California at Berkeley (with Michael Jordan) and National University of Singapore (as Lee Kuan Yew Postdoctoral Fellow). I was a Lecturer then a Reader at the Gatsby Computational Neuroscience Unit, UCL, and a tutorial fellow at University College Oxford, prior to my current appointment. I am interested in the statistical and computational foundations of intelligence, and works on scalable machine learning, probabilistic models, Bayesian nonparametrics and deep learning. I was programme co-chair of ICML 2017 and AISTATS 2010.

Esther Chan (Molecular Genetics, University of Toronto)
Michael Brudno (University of Toronto)
Tim Hughes (University of Toronto)
Quaid Morris (Memorial Sloan Kettering)

More from the Same Authors