Timezone: »

A Convergent O(n) Temporal-difference Algorithm for Off-policy Learning with Linear Function Approxi
Richard Sutton · Csaba Szepesvari · Hamid R Maei

Mon Dec 08 08:45 PM -- 12:00 AM (PST) @ None #None

We introduce the first temporal-difference learning algorithm that is stable with linear function approximation and off-policy training, for any finite Markov decision process, target policy, and exciting behavior policy, and whose complexity scales linearly in the number of parameters. We consider an i.i.d.\ policy-evaluation setting in which the data need not come from on-policy experience. The gradient temporal-difference (GTD) algorithm estimates the expected update vector of the TD(0) algorithm and performs stochastic gradient descent on its L_2 norm. Our analysis proves that its expected update is in the direction of the gradient, assuring convergence under the usual stochastic approximation conditions to the same least-squares solution as found by the LSTD, but without its quadratic computational complexity. GTD is online and incremental, and does not involve multiplying by products of likelihood ratios as in importance-sampling methods.

Author Information

Rich Sutton (DeepMind & Univ of Alberta)

Richard S. Sutton is a professor and iCORE chair in the department of computing science at the University of Alberta. He is a fellow of the Association for the Advancement of Artificial Intelligence and co-author of the textbook "Reinforcement Learning: An Introduction" from MIT Press. Before joining the University of Alberta in 2003, he worked in industry at AT&T and GTE Labs, and in academia at the University of Massachusetts. He received a PhD in computer science from the University of Massachusetts in 1984 and a BA in psychology from Stanford University in 1978. Rich's research interests center on the learning problems facing a decision-maker interacting with its environment, which he sees as central to artificial intelligence. He is also interested in animal learning psychology, in connectionist networks, and generally in systems that continually improve their representations and models of the world.

Csaba Szepesvari (DeepMind / University of Alberta)
Hamid R Maei (Stanford University)

More from the Same Authors