Timezone: »
Poster
Sparse Convolved Gaussian Processes for Multi-ouptut Regression
Mauricio A Alvarez · Neil D Lawrence
We present a sparse approximation approach for dependent output Gaussian processes (GP). Employing a latent function framework, we apply the convolution process formalism to establish dependencies between output variables, where each latent function is represented as a GP. Based on these latent functions, we establish an approximation scheme using a conditional independence assumption between the output processes, leading to an approximation of the full covariance which is determined by the locations at which the latent functions are evaluated. We show results of the proposed methodology for synthetic data and real world applications on pollution prediction and a sensor network.
Author Information
Mauricio A Alvarez (University of Manchester)
Neil D Lawrence (University of Cambridge)
More from the Same Authors
-
2018 : Research Panel »
Sinead Williamson · Barbara Engelhardt · Tom Griffiths · Neil Lawrence · Hanna Wallach -
2017 : Neil Lawrence, Francis Bach and François Laviolette »
Neil Lawrence · Francis Bach · Francois Laviolette -
2017 : Panel Session »
Neil Lawrence · Finale Doshi-Velez · Zoubin Ghahramani · Yann LeCun · Max Welling · Yee Whye Teh · Ole Winther -
2017 Tutorial: Deep Probabilistic Modelling with Gaussian Processes »
Neil D Lawrence -
2015 Workshop: Advances in Approximate Bayesian Inference »
Dustin Tran · Tamara Broderick · Stephan Mandt · James McInerney · Shakir Mohamed · Alp Kucukelbir · Matthew D. Hoffman · Neil Lawrence · David Blei -
2014 Workshop: ABC in Montreal »
Max Welling · Neil D Lawrence · Richard D Wilkinson · Ted Meeds · Christian X Robert -
2013 Workshop: Probabilistic Models for Big Data »
Neil D Lawrence · Joaquin Quiñonero-Candela · Tianshi Gao · James Hensman · Zoubin Ghahramani · Max Welling · David Blei · Ralf Herbrich -
2013 Session: Oral Session 1 »
Neil D Lawrence -
2012 Poster: Fast Variational Inference in the Conjugate Exponential Family »
James Hensman · Magnus Rattray · Neil D Lawrence -
2011 Poster: Learning sparse inverse covariance matrices in the presence of confounders »
Oliver Stegle · Christoph Lippert · Joris M Mooij · Neil D Lawrence · Karsten Borgwardt -
2011 Poster: Variational Gaussian Process Dynamical Systems »
Andreas Damianou · Michalis Titsias · Neil D Lawrence -
2010 Placeholder: Opening Remarks »
Terrence Sejnowski · Neil D Lawrence -
2010 Spotlight: Switched Latent Force Models for Movement Segmentation »
Mauricio A Alvarez · Jan Peters · Bernhard Schölkopf · Neil D Lawrence -
2010 Poster: Switched Latent Force Models for Movement Segmentation »
Mauricio A Alvarez · Jan Peters · Bernhard Schölkopf · Neil D Lawrence -
2009 Workshop: Kernels for Multiple Outputs and Multi-task Learning: Frequentist and Bayesian Points of View »
Mauricio A Alvarez · Lorenzo Rosasco · Neil D Lawrence -
2008 Poster: Efficient Sampling for Gaussian Process Inference using Control Variables »
Michalis Titsias · Neil D Lawrence · Magnus Rattray -
2008 Spotlight: Efficient Sampling for Gaussian Process Inference using Control Variables »
Michalis Titsias · Neil D Lawrence · Magnus Rattray -
2008 Poster: Accelerating Bayesian Inference over Nonlinear Differential Equations with Gaussian Processes »
Ben Calderhead · Mark A Girolami · Neil D Lawrence -
2007 Workshop: Approximate Bayesian Inference in Continuous/Hybrid Models »
Matthias Seeger · David Barber · Neil D Lawrence · Onno Zoeter -
2006 Workshop: Learning when test and training inputs have different distributions »
Joaquin Quiñonero-Candela · Masashi Sugiyama · Anton Schwaighofer · Neil D Lawrence -
2006 Poster: Modelling transcriptional regulation using Gaussian Processes »
Neil D Lawrence · Guido Sanguinetti · Magnus Rattray