Timezone: »
Poster
Sparse Signal Recovery Using Markov Random Fields
Volkan Cevher · Marco F Duarte · Chinmay Hegde · Richard Baraniuk
Compressive Sensing (CS) combines sampling and compression into a single sub-Nyquist linear measurement process for sparse and compressible signals. In this paper, we extend the theory of CS to include signals that are concisely represented in terms of a graphical model. In particular, we use Markov Random Fields (MRFs) to represent sparse signals whose nonzero coefficients are clustered. Our new model-based reconstruction algorithm, dubbed Lattice Matching Pursuit (LaMP), stably recovers MRF-modeled signals using many fewer measurements and computations than the current state-of-the-art algorithms.
Author Information
Volkan Cevher (EPFL)
Marco F Duarte (University of Massachusetts)
Chinmay Hegde (Rice University)
Richard Baraniuk (Rice University)
Related Events (a corresponding poster, oral, or spotlight)
-
2008 Spotlight: Sparse Signal Recovery Using Markov Random Fields »
Thu. Dec 11th 01:23 -- 01:24 AM Room
More from the Same Authors
-
2022 : Investigating Reproducibility from the Decision Boundary Perspective. »
Gowthami Somepalli · Arpit Bansal · Liam Fowl · Ping-yeh Chiang · Yehuda Dar · Richard Baraniuk · Micah Goldblum · Tom Goldstein -
2022 : Retrieval-based Controllable Molecule Generation »
Jack Wang · Weili Nie · Zhuoran Qiao · Chaowei Xiao · Richard Baraniuk · Anima Anandkumar -
2022 : Exact Visualization of Deep Neural Network Geometry and Decision Boundary »
Ahmed Imtiaz Humayun · Randall Balestriero · Richard Baraniuk -
2022 : Using Deep Learning and Macroscopic Imaging of Porcine Heart Valve Leaflets to Predict Uniaxial Stress-Strain Responses »
Luis Victor · CJ Barberan · Richard Baraniuk · Jane Grande-Allen -
2022 Poster: Adaptive Stochastic Variance Reduction for Non-convex Finite-Sum Minimization »
Ali Kavis · Stratis Skoulakis · Kimon Antonakopoulos · Leello Tadesse Dadi · Volkan Cevher -
2022 Poster: No-regret learning in games with noisy feedback: Faster rates and adaptivity via learning rate separation »
Yu-Guan Hsieh · Kimon Antonakopoulos · Volkan Cevher · Panayotis Mertikopoulos -
2022 Poster: Generalization Properties of NAS under Activation and Skip Connection Search »
Zhenyu Zhu · Fanghui Liu · Grigorios Chrysos · Volkan Cevher -
2022 Poster: Robustness in deep learning: The good (width), the bad (depth), and the ugly (initialization) »
Zhenyu Zhu · Fanghui Liu · Grigorios Chrysos · Volkan Cevher -
2022 Poster: On the Double Descent of Random Features Models Trained with SGD »
Fanghui Liu · Johan Suykens · Volkan Cevher -
2022 Poster: Identifiability and generalizability from multiple experts in Inverse Reinforcement Learning »
Paul Rolland · Luca Viano · Norman Schürhoff · Boris Nikolov · Volkan Cevher -
2022 Poster: Extrapolation and Spectral Bias of Neural Nets with Hadamard Product: a Polynomial Net Study »
Yongtao Wu · Zhenyu Zhu · Fanghui Liu · Grigorios Chrysos · Volkan Cevher -
2022 Poster: Proximal Point Imitation Learning »
Luca Viano · Angeliki Kamoutsi · Gergely Neu · Igor Krawczuk · Volkan Cevher -
2022 Poster: Understanding Deep Neural Function Approximation in Reinforcement Learning via $\epsilon$-Greedy Exploration »
Fanghui Liu · Luca Viano · Volkan Cevher -
2022 Poster: Sound and Complete Verification of Polynomial Networks »
Elias Abad Rocamora · Mehmet Fatih Sahin · Fanghui Liu · Grigorios Chrysos · Volkan Cevher -
2022 Poster: Extra-Newton: A First Approach to Noise-Adaptive Accelerated Second-Order Methods »
Kimon Antonakopoulos · Ali Kavis · Volkan Cevher -
2022 Poster: Parameters or Privacy: A Provable Tradeoff Between Overparameterization and Membership Inference »
Jasper Tan · Blake Mason · Hamid Javadi · Richard Baraniuk -
2021 Poster: The Effect of the Intrinsic Dimension on the Generalization of Quadratic Classifiers »
Fabian Latorre · Leello Tadesse Dadi · Paul Rolland · Volkan Cevher -
2021 Poster: Convergence of adaptive algorithms for constrained weakly convex optimization »
Ahmet Alacaoglu · Yura Malitsky · Volkan Cevher -
2021 Poster: The Flip Side of the Reweighted Coin: Duality of Adaptive Dropout and Regularization »
Daniel LeJeune · Hamid Javadi · Richard Baraniuk -
2021 Poster: STORM+: Fully Adaptive SGD with Recursive Momentum for Nonconvex Optimization »
Kfir Levy · Ali Kavis · Volkan Cevher -
2021 Poster: Subquadratic Overparameterization for Shallow Neural Networks »
ChaeHwan Song · Ali Ramezani-Kebrya · Thomas Pethick · Armin Eftekhari · Volkan Cevher -
2021 Poster: Sifting through the noise: Universal first-order methods for stochastic variational inequalities »
Kimon Antonakopoulos · Thomas Pethick · Ali Kavis · Panayotis Mertikopoulos · Volkan Cevher -
2021 Poster: Robust Inverse Reinforcement Learning under Transition Dynamics Mismatch »
Luca Viano · Yu-Ting Huang · Parameswaran Kamalaruban · Adrian Weller · Volkan Cevher -
2021 Poster: A first-order primal-dual method with adaptivity to local smoothness »
Maria-Luiza Vladarean · Yura Malitsky · Volkan Cevher -
2020 : Opening Remarks »
Reinhard Heckel · Paul Hand · Soheil Feizi · Lenka Zdeborová · Richard Baraniuk -
2020 Workshop: Workshop on Deep Learning and Inverse Problems »
Reinhard Heckel · Paul Hand · Richard Baraniuk · Lenka Zdeborová · Soheil Feizi -
2020 : Invited speaker: Adaptation and universality in first-order methods, Volkan Cevher »
Volkan Cevher -
2020 Poster: Analytical Probability Distributions and Exact Expectation-Maximization for Deep Generative Networks »
Randall Balestriero · Sebastien PARIS · Richard Baraniuk -
2020 Poster: MomentumRNN: Integrating Momentum into Recurrent Neural Networks »
Tan Nguyen · Richard Baraniuk · Andrea Bertozzi · Stanley Osher · Bao Wang -
2020 Poster: On the Almost Sure Convergence of Stochastic Gradient Descent in Non-Convex Problems »
Panayotis Mertikopoulos · Nadav Hallak · Ali Kavis · Volkan Cevher -
2020 Poster: Robust Reinforcement Learning via Adversarial training with Langevin Dynamics »
Parameswaran Kamalaruban · Yu-Ting Huang · Ya-Ping Hsieh · Paul Rolland · Cheng Shi · Volkan Cevher -
2019 : Poster Session »
Pravish Sainath · Mohamed Akrout · Charles Delahunt · Nathan Kutz · Guangyu Robert Yang · Joseph Marino · L F Abbott · Nicolas Vecoven · Damien Ernst · andrew warrington · Michael Kagan · Kyunghyun Cho · Kameron Harris · Leopold Grinberg · John J. Hopfield · Dmitry Krotov · Taliah Muhammad · Erick Cobos · Edgar Walker · Jacob Reimer · Andreas Tolias · Alexander Ecker · Janaki Sheth · Yu Zhang · Maciej Wołczyk · Jacek Tabor · Szymon Maszke · Roman Pogodin · Dane Corneil · Wulfram Gerstner · Baihan Lin · Guillermo Cecchi · Jenna M Reinen · Irina Rish · Guillaume Bellec · Darjan Salaj · Anand Subramoney · Wolfgang Maass · Yueqi Wang · Ari Pakman · Jin Hyung Lee · Liam Paninski · Bryan Tripp · Colin Graber · Alex Schwing · Luke Prince · Gabriel Ocker · Michael Buice · Benjamin Lansdell · Konrad Kording · Jack Lindsey · Terrence Sejnowski · Matthew Farrell · Eric Shea-Brown · Nicolas Farrugia · Victor Nepveu · Jiwoong Im · Kristin Branson · Brian Hu · Ramakrishnan Iyer · Stefan Mihalas · Sneha Aenugu · Hananel Hazan · Sihui Dai · Tan Nguyen · Doris Tsao · Richard Baraniuk · Anima Anandkumar · Hidenori Tanaka · Aran Nayebi · Stephen Baccus · Surya Ganguli · Dean Pospisil · Eilif Muller · Jeffrey S Cheng · Gaël Varoquaux · Kamalaker Dadi · Dimitrios C Gklezakos · Rajesh PN Rao · Anand Louis · Christos Papadimitriou · Santosh Vempala · Naganand Yadati · Daniel Zdeblick · Daniela M Witten · Nicholas Roberts · Vinay Prabhu · Pierre Bellec · Poornima Ramesh · Jakob H Macke · Santiago Cadena · Guillaume Bellec · Franz Scherr · Owen Marschall · Robert Kim · Hannes Rapp · Marcio Fonseca · Oliver Armitage · Jiwoong Im · Thomas Hardcastle · Abhishek Sharma · Wyeth Bair · Adrian Valente · Shane Shang · Merav Stern · Rutuja Patil · Peter Wang · Sruthi Gorantla · Peter Stratton · Tristan Edwards · Jialin Lu · Martin Ester · Yurii Vlasov · Siavash Golkar -
2019 : Poster and Coffee Break 2 »
Karol Hausman · Kefan Dong · Ken Goldberg · Lihong Li · Lin Yang · Lingxiao Wang · Lior Shani · Liwei Wang · Loren Amdahl-Culleton · Lucas Cassano · Marc Dymetman · Marc Bellemare · Marcin Tomczak · Margarita Castro · Marius Kloft · Marius-Constantin Dinu · Markus Holzleitner · Martha White · Mengdi Wang · Michael Jordan · Mihailo Jovanovic · Ming Yu · Minshuo Chen · Moonkyung Ryu · Muhammad Zaheer · Naman Agarwal · Nan Jiang · Niao He · Nikolaus Yasui · Nikos Karampatziakis · Nino Vieillard · Ofir Nachum · Olivier Pietquin · Ozan Sener · Pan Xu · Parameswaran Kamalaruban · Paul Mineiro · Paul Rolland · Philip Amortila · Pierre-Luc Bacon · Prakash Panangaden · Qi Cai · Qiang Liu · Quanquan Gu · Raihan Seraj · Richard Sutton · Rick Valenzano · Robert Dadashi · Rodrigo Toro Icarte · Roshan Shariff · Roy Fox · Ruosong Wang · Saeed Ghadimi · Samuel Sokota · Sean Sinclair · Sepp Hochreiter · Sergey Levine · Sergio Valcarcel Macua · Sham Kakade · Shangtong Zhang · Sheila McIlraith · Shie Mannor · Shimon Whiteson · Shuai Li · Shuang Qiu · Wai Lok Li · Siddhartha Banerjee · Sitao Luan · Tamer Basar · Thinh Doan · Tianhe Yu · Tianyi Liu · Tom Zahavy · Toryn Klassen · Tuo Zhao · Vicenç Gómez · Vincent Liu · Volkan Cevher · Wesley Suttle · Xiao-Wen Chang · Xiaohan Wei · Xiaotong Liu · Xingguo Li · Xinyi Chen · Xingyou Song · Yao Liu · YiDing Jiang · Yihao Feng · Yilun Du · Yinlam Chow · Yinyu Ye · Yishay Mansour · · Yonathan Efroni · Yongxin Chen · Yuanhao Wang · Bo Dai · Chen-Yu Wei · Harsh Shrivastava · Hongyang Zhang · Qinqing Zheng · SIDDHARTHA SATPATHI · Xueqing Liu · Andreu Vall -
2019 : Opening Remarks »
Reinhard Heckel · Paul Hand · Alex Dimakis · Joan Bruna · Deanna Needell · Richard Baraniuk -
2019 Workshop: Solving inverse problems with deep networks: New architectures, theoretical foundations, and applications »
Reinhard Heckel · Paul Hand · Richard Baraniuk · Joan Bruna · Alex Dimakis · Deanna Needell -
2019 Poster: An Inexact Augmented Lagrangian Framework for Nonconvex Optimization with Nonlinear Constraints »
Mehmet Fatih Sahin · Armin eftekhari · Ahmet Alacaoglu · Fabian Latorre · Volkan Cevher -
2019 Poster: Stochastic Frank-Wolfe for Composite Convex Minimization »
Francesco Locatello · Alp Yurtsever · Olivier Fercoq · Volkan Cevher -
2019 Poster: UniXGrad: A Universal, Adaptive Algorithm with Optimal Guarantees for Constrained Optimization »
Ali Kavis · Kfir Y. Levy · Francis Bach · Volkan Cevher -
2019 Poster: Fast and Provable ADMM for Learning with Generative Priors »
Fabian Latorre · Armin eftekhari · Volkan Cevher -
2019 Spotlight: UniXGrad: A Universal, Adaptive Algorithm with Optimal Guarantees for Constrained Optimization »
Ali Kavis · Kfir Y. Levy · Francis Bach · Volkan Cevher -
2019 Spotlight: Fast and Provable ADMM for Learning with Generative Priors »
Fabian Latorre · Armin eftekhari · Volkan Cevher -
2019 Poster: The Geometry of Deep Networks: Power Diagram Subdivision »
Randall Balestriero · Romain Cosentino · Behnaam Aazhang · Richard Baraniuk -
2018 Workshop: Integration of Deep Learning Theories »
Richard Baraniuk · Anima Anandkumar · Stephane Mallat · Ankit Patel · nhật Hồ -
2018 : Panel Discussion »
Richard Baraniuk · Maarten V. de Hoop · Paul A Johnson -
2018 : Finding Mixed Nash Equilibria of Generative Adversarial Networks »
Volkan Cevher -
2018 : Introduction »
Laura Pyrak-Nolte · James Rustad · Richard Baraniuk -
2018 Workshop: Machine Learning for Geophysical & Geochemical Signals »
Laura Pyrak-Nolte · James Rustad · Richard Baraniuk -
2018 Poster: Online Adaptive Methods, Universality and Acceleration »
Kfir Y. Levy · Alp Yurtsever · Volkan Cevher -
2018 Poster: Mirrored Langevin Dynamics »
Ya-Ping Hsieh · Ali Kavis · Paul Rolland · Volkan Cevher -
2018 Spotlight: Mirrored Langevin Dynamics »
Ya-Ping Hsieh · Ali Kavis · Paul Rolland · Volkan Cevher -
2018 Poster: Adversarially Robust Optimization with Gaussian Processes »
Ilija Bogunovic · Jonathan Scarlett · Stefanie Jegelka · Volkan Cevher -
2018 Spotlight: Adversarially Robust Optimization with Gaussian Processes »
Ilija Bogunovic · Jonathan Scarlett · Stefanie Jegelka · Volkan Cevher -
2017 Workshop: Advances in Modeling and Learning Interactions from Complex Data »
Gautam Dasarathy · Mladen Kolar · Richard Baraniuk -
2017 Poster: Streaming Robust Submodular Maximization: A Partitioned Thresholding Approach »
Slobodan Mitrovic · Ilija Bogunovic · Ashkan Norouzi-Fard · Jakub M Tarnawski · Volkan Cevher -
2017 Poster: Fixed-Rank Approximation of a Positive-Semidefinite Matrix from Streaming Data »
Joel A Tropp · Alp Yurtsever · Madeleine Udell · Volkan Cevher -
2017 Poster: Phase Transitions in the Pooled Data Problem »
Jonathan Scarlett · Volkan Cevher -
2017 Poster: Learned D-AMP: Principled Neural Network based Compressive Image Recovery »
Chris Metzler · Ali Mousavi · Richard Baraniuk -
2017 Poster: Smooth Primal-Dual Coordinate Descent Algorithms for Nonsmooth Convex Optimization »
Ahmet Alacaoglu · Quoc Tran Dinh · Olivier Fercoq · Volkan Cevher -
2016 Workshop: Machine Learning for Education »
Richard Baraniuk · Jiquan Ngiam · Christoph Studer · Phillip Grimaldi · Andrew Lan -
2016 Poster: An Efficient Streaming Algorithm for the Submodular Cover Problem »
Ashkan Norouzi-Fard · Abbas Bazzi · Ilija Bogunovic · Marwa El Halabi · Ya-Ping Hsieh · Volkan Cevher -
2016 Poster: A Probabilistic Framework for Deep Learning »
Ankit Patel · Tan Nguyen · Richard Baraniuk -
2016 Poster: Truncated Variance Reduction: A Unified Approach to Bayesian Optimization and Level-Set Estimation »
Ilija Bogunovic · Jonathan Scarlett · Andreas Krause · Volkan Cevher -
2016 Poster: Stochastic Three-Composite Convex Minimization »
Alp Yurtsever · Bang Cong Vu · Volkan Cevher -
2015 : Low-dimensional inference with high-dimensional data »
Richard Baraniuk -
2015 : Probabilistic Theory of Deep Learning »
Richard Baraniuk -
2015 Poster: Preconditioned Spectral Descent for Deep Learning »
David Carlson · Edo Collins · Ya-Ping Hsieh · Lawrence Carin · Volkan Cevher -
2015 Poster: A Universal Primal-Dual Convex Optimization Framework »
Alp Yurtsever · Quoc Tran Dinh · Volkan Cevher -
2014 Workshop: Discrete Optimization in Machine Learning »
Jeffrey A Bilmes · Andreas Krause · Stefanie Jegelka · S Thomas McCormick · Sebastian Nowozin · Yaron Singer · Dhruv Batra · Volkan Cevher -
2014 Workshop: Human Propelled Machine Learning »
Richard Baraniuk · Michael Mozer · Divyanshu Vats · Christoph Studer · Andrew E Waters · Andrew Lan -
2014 Poster: Constrained convex minimization via model-based excessive gap »
Quoc Tran-Dinh · Volkan Cevher -
2014 Poster: Time--Data Tradeoffs by Aggressive Smoothing »
John J Bruer · Joel A Tropp · Volkan Cevher · Stephen Becker -
2013 Poster: High-Dimensional Gaussian Process Bandits »
Josip Djolonga · Andreas Krause · Volkan Cevher -
2013 Poster: When in Doubt, SWAP: High-Dimensional Sparse Recovery from Correlated Measurements »
Divyanshu Vats · Richard Baraniuk -
2012 Poster: Active Learning of Multi-Index Function Models »
Hemant Tyagi · Volkan Cevher -
2011 Poster: SpaRCS: Recovering low-rank and sparse matrices from compressive measurements »
Andrew E Waters · Aswin C Sankaranarayanan · Richard Baraniuk -
2009 Workshop: Manifolds, sparsity, and structured models: When can low-dimensional geometry really help? »
Richard Baraniuk · Volkan Cevher · Mark A Davenport · Piotr Indyk · Bruno Olshausen · Michael B Wakin -
2009 Poster: Learning with Compressible Priors »
Volkan Cevher -
2007 Poster: Random Projections for Manifold Learning »
Chinmay Hegde · Richard Baraniuk