Timezone: »

Nonlinear causal discovery with additive noise models
Patrik O Hoyer · Dominik Janzing · Joris M Mooij · Jonas Peters · Bernhard Schölkopf

Tue Dec 07:30 PM -- 12:00 AM PST @ None #None

The discovery of causal relationships between a set of observed variables is a fundamental problem in science. For continuous-valued data linear acyclic causal models are often used because these models are well understood and there are well-known methods to fit them to data. In reality, of course, many causal relationships are more or less nonlinear, raising some doubts as to the applicability and usefulness of purely linear methods. In this contribution we show that in fact the basic linear framework can be generalized to nonlinear models with additive noise. In this extended framework, nonlinearities in the data-generating process are in fact a blessing rather than a curse, as they typically provide information on the underlying causal system and allow more aspects of the true data-generating mechanisms to be identified. In addition to theoretical results we show simulations and some simple real data experiments illustrating the identification power provided by nonlinearities.

Author Information

Patrik O Hoyer (University of Helsinki)
Dominik Janzing (MPI Tübingen)
Joris M Mooij (Radboud University Nijmegen)
Jonas Peters (MPI Tübingen)
Bernhard Schölkopf (MPI for Intelligent Systems)

Bernhard Scholkopf received degrees in mathematics (London) and physics (Tubingen), and a doctorate in computer science from the Technical University Berlin. He has researched at AT&T Bell Labs, at GMD FIRST, Berlin, at the Australian National University, Canberra, and at Microsoft Research Cambridge (UK). In 2001, he was appointed scientific member of the Max Planck Society and director at the MPI for Biological Cybernetics; in 2010 he founded the Max Planck Institute for Intelligent Systems. For further information, see www.kyb.tuebingen.mpg.de/~bs.

More from the Same Authors