Timezone: »
Spotlight
Exact Convex Confidence-Weighted Learning
Yacov Crammer · Mark Dredze · Fernando Pereira
Confidence-weighted (CW) learning [6], an online learning method for linear classifiers, maintains a Gaussian distributions over weight vectors, with a covariance matrix that represents uncertainty about weights and correlations. Confidence constraints ensure that a weight vector drawn from the hypothesis distribution correctly classifies examples with a specified probability. Within this framework, we derive a new convex form of the constraint and analyze it in the mistake bound model. Empirical evaluation with both synthetic and text data shows our version of CW learning achieves lower cumulative and out-of-sample errors than commonly used first-order and second-order online methods.
Author Information
Yacov Crammer (Technion)
Mark Dredze (Johns Hopkins)
Fernando Pereira (Google)
Related Events (a corresponding poster, oral, or spotlight)
-
2008 Poster: Exact Convex Confidence-Weighted Learning »
Wed. Dec 10th through Tue the 9th Room
More from the Same Authors
-
2022 : The Importance of Temperature in Multi-Task Optimization »
David Mueller · Mark Dredze · Nicholas Andrews -
2022 Poster: Finite Sample Analysis Of Dynamic Regression Parameter Learning »
Mark Kozdoba · Edward Moroshko · Shie Mannor · Yacov Crammer -
2020 : Mark Dredze: Reducing Health Disparities in the Future of Medicine »
Mark Dredze -
2020 Poster: Faithful Embeddings for Knowledge Base Queries »
Haitian Sun · Andrew Arnold · Tania Bedrax Weiss · Fernando Pereira · William Cohen -
2018 Poster: Efficient Loss-Based Decoding on Graphs for Extreme Classification »
Itay Evron · Edward Moroshko · Yacov Crammer -
2017 Poster: Rotting Bandits »
Nir Levine · Yacov Crammer · Shie Mannor -
2015 Poster: Linear Multi-Resource Allocation with Semi-Bandit Feedback »
Tor Lattimore · Yacov Crammer · Csaba Szepesvari -
2014 Poster: Learning Multiple Tasks in Parallel with a Shared Annotator »
Haim Cohen · Yacov Crammer -
2013 Workshop: Resource-Efficient Machine Learning »
Yevgeny Seldin · Yasin Abbasi Yadkori · Yacov Crammer · Ralf Herbrich · Peter Bartlett -
2012 Workshop: Multi-Trade-offs in Machine Learning »
Yevgeny Seldin · Guy Lever · John Shawe-Taylor · Nicolò Cesa-Bianchi · Yacov Crammer · Francois Laviolette · Gabor Lugosi · Peter Bartlett -
2012 Poster: Factorial LDA: Sparse Multi-Dimensional Text Models »
Michael J Paul · Mark Dredze -
2012 Poster: Volume Regularization for Binary Classification »
Yacov Crammer · Tal Wagner -
2012 Spotlight: Volume Regularization for Binary Classification »
Yacov Crammer · Tal Wagner -
2012 Poster: Learning Multiple Tasks using Shared Hypotheses »
Yacov Crammer · Yishay Mansour -
2011 Workshop: New Frontiers in Model Order Selection »
Yevgeny Seldin · Yacov Crammer · Nicolò Cesa-Bianchi · Francois Laviolette · John Shawe-Taylor -
2011 Session: Opening Remarks and Awards »
Terrence Sejnowski · Peter Bartlett · Fernando Pereira -
2010 Poster: Learning via Gaussian Herding »
Yacov Crammer · Daniel Lee -
2010 Poster: New Adaptive Algorithms for Online Classification »
Francesco Orabona · Yacov Crammer -
2009 Workshop: Advances in Ranking »
Shivani Agarwal · Chris J Burges · Yacov Crammer -
2009 Poster: Adaptive Regularization of Weight Vectors »
Yacov Crammer · Alex Kulesza · Mark Dredze -
2009 Poster: Posterior vs Parameter Sparsity in Latent Variable Models »
Joao V Graca · Kuzman Ganchev · Ben Taskar · Fernando Pereira -
2009 Spotlight: Posterior vs Parameter Sparsity in Latent Variable Models »
Joao V Graca · Kuzman Ganchev · Ben Taskar · Fernando Pereira -
2009 Spotlight: Adaptive Regularization of Weight Vectors »
Yacov Crammer · Alex Kulesza · Mark Dredze -
2009 Poster: Group Sparse Coding »
Samy Bengio · Fernando Pereira · Yoram Singer · Dennis Strelow -
2008 Session: Oral session 6: Neural Coding »
Yacov Crammer -
2007 Spotlight: Structured Learning with Approximate Inference »
Alex Kulesza · Fernando Pereira -
2007 Poster: Structured Learning with Approximate Inference »
Alex Kulesza · Fernando Pereira -
2007 Poster: Learning Bounds for Domain Adaptation »
John Blitzer · Yacov Crammer · Alex Kulesza · Fernando Pereira · Jennifer Wortman Vaughan -
2006 Poster: Learning from Multiple Sources »
Yacov Crammer · Michael Kearns · Jennifer Wortman Vaughan -
2006 Poster: Analysis of Representations for Domain Adaptation »
John Blitzer · Shai Ben-David · Yacov Crammer · Fernando Pereira