Timezone: »

 
Oral
Cascaded Classification Models: Combining Models for Holistic Scene Understanding
Geremy Heitz · Stephen Gould · Ashutosh Saxena · Daphne Koller

One of the original goals of computer vision was to fully understand a natural scene. This requires solving several problems simultaneously, including object detection, labeling of meaningful regions, and 3d reconstruction. While great progress has been made in tackling each of these problems in isolation, only recently have researchers again been considering the difficult task of assembling various methods to the mutual benefit of all. We consider learning a set of such classification models in such a way that they both solve their own problem and help each other. We develop a framework known as Cascaded Classification Models (CCM), where repeated instantiations of these classifiers are coupled by their input/output variables in a cascade that improves performance at each level. Our method requires only a limited “black box” interface with the models, allowing us to use very sophisticated, state-of-the-art classifiers without having to look under the hood. We demonstrate the effectiveness of our method on a large set of natural images by combining the subtasks of scene categorization, object detection, multiclass image segmentation, and 3d scene reconstruction.

Author Information

Geremy Heitz (Stanford University)
Stephen Gould (ANU)
Ashutosh Saxena (Cornell University)
Daphne Koller (insitro)

Daphne Koller is the Rajeev Motwani Professor of Computer Science at Stanford University and the co-founder and co-CEO of Coursera, a social entrepreneurship company that works with the best universities to connect anyone around the world with the best education, for free. Coursera is the leading MOOC (Massive Open Online Course) platform, and has partnered with dozens of the world’s top universities to offer hundreds of courses in a broad range of disciplines to millions of students, spanning every country in the world. In her research life, she works in the area of machine learning and probabilistic modeling, with applications to systems biology and personalized medicine. She is the author of over 200 refereed publications in venues that span a range of disciplines, and has given over 15 keynote talks at major conferences. She is the recipient of many awards, which include the Presidential Early Career Award for Scientists and Engineers (PECASE), the MacArthur Foundation Fellowship, the ACM/Infosys award, and membership in the US National Academy of Engineering. She is also an award winning teacher, who pioneered in her Stanford class many of the ideas that underlie the Coursera user experience. She received her BSc and MSc from the Hebrew University of Jerusalem, and her PhD from Stanford in 1994.

Related Events (a corresponding poster, oral, or spotlight)

More from the Same Authors