Timezone: »
Reinforcement Learning (RL) problems are typically formulated in terms of Stochastic Decision Processes (SDPs), or a specialization thereof, Markovian Decision Processes (MDPs), with the goal of identifying an optimal control policy. In contrast to planning problems, RL problems are characterized by the lack of complete information concerning the transition and reward models of the SDP. Hence, algorithms for solving RL problems need to estimate properties of the system from finite data. Naturally, any such estimated quantity has inherent uncertainty. One of the interesting and challenging aspects of RL is that the algorithms have partial control over the data sample they observe, allowing them to actively control the amount of this uncertainty, and potentially trade it off against performance. Reinforcement Learning as a field of research, has over the past few years seen renewed interest in methods that explicitly consider the uncertainties inherent to the learning process. Indeed, interest in data-driven models that take uncertainties into account, goes beyond RL to the fields of Control Theory, Operations Research and Statistics. Within the RL community, relevant lines of research include Bayesian RL, risk sensitive and robust dynamic decision making, RL with confidence intervals and applications of risk-aware and uncertainty-aware decision-making. The goal of the workshop is to bring together researchers in RL and related fields that work on issues related to risk and model uncertainty, stimulate interactions and discuss directions for future work.
Author Information
Yaakov Engel (Rafael)
Mohammad Ghavamzadeh (Facebook AI Research)
Shie Mannor (McGill University)
Pascal Poupart (University of Waterloo)
More from the Same Authors
-
2019 Workshop: Safety and Robustness in Decision-making »
Mohammad Ghavamzadeh · Shie Mannor · Yisong Yue · Marek Petrik · Yinlam Chow -
2019 Poster: Tight Regret Bounds for Model-Based Reinforcement Learning with Greedy Policies »
Yonathan Efroni · Nadav Merlis · Mohammad Ghavamzadeh · Shie Mannor -
2019 Spotlight: Tight Regret Bounds for Model-Based Reinforcement Learning with Greedy Policies »
Yonathan Efroni · Nadav Merlis · Mohammad Ghavamzadeh · Shie Mannor -
2018 Poster: A Lyapunov-based Approach to Safe Reinforcement Learning »
Yinlam Chow · Ofir Nachum · Edgar Duenez-Guzman · Mohammad Ghavamzadeh -
2018 Poster: A Block Coordinate Ascent Algorithm for Mean-Variance Optimization »
Tengyang Xie · Bo Liu · Yangyang Xu · Mohammad Ghavamzadeh · Yinlam Chow · Daoming Lyu · Daesub Yoon -
2017 Poster: Conservative Contextual Linear Bandits »
Abbas Kazerouni · Mohammad Ghavamzadeh · Yasin Abbasi · Benjamin Van Roy -
2016 Poster: Safe Policy Improvement by Minimizing Robust Baseline Regret »
Mohammad Ghavamzadeh · Marek Petrik · Yinlam Chow -
2015 Workshop: Machine Learning for (e-)Commerce »
Esteban Arcaute · Mohammad Ghavamzadeh · Shie Mannor · Georgios Theocharous -
2015 Poster: Policy Gradient for Coherent Risk Measures »
Aviv Tamar · Yinlam Chow · Mohammad Ghavamzadeh · Shie Mannor -
2014 Workshop: Large-scale reinforcement learning and Markov decision problems »
Benjamin Van Roy · Mohammad Ghavamzadeh · Peter Bartlett · Yasin Abbasi Yadkori · Ambuj Tewari -
2014 Poster: Algorithms for CVaR Optimization in MDPs »
Yinlam Chow · Mohammad Ghavamzadeh -
2013 Poster: Actor-Critic Algorithms for Risk-Sensitive MDPs »
Prashanth L.A. · Mohammad Ghavamzadeh -
2013 Poster: Approximate Dynamic Programming Finally Performs Well in the Game of Tetris »
Victor Gabillon · Mohammad Ghavamzadeh · Bruno Scherrer -
2013 Oral: Actor-Critic Algorithms for Risk-Sensitive MDPs »
Prashanth L.A. · Mohammad Ghavamzadeh -
2012 Poster: Cost-Sensitive Exploration in Bayesian Reinforcement Learning »
Dongho Kim · Kee-Eung Kim · Pascal Poupart -
2012 Poster: Best Arm Identification: A Unified Approach to Fixed Budget and Fixed Confidence »
Victor Gabillon · Mohammad Ghavamzadeh · Alessandro Lazaric -
2012 Poster: Symbolic Dynamic Programming for Continuous State and Observation POMDPs »
Zahra Zamani · Scott Sanner · Pascal Poupart · Kristian Kersting -
2011 Poster: Automated Refinement of Bayes Networks' Parameters based on Test Ordering Constraints »
Omar Z Khan · Pascal Poupart · John Agosta -
2011 Poster: Multi-Bandit Best Arm Identification »
Victor Gabillon · Mohammad Ghavamzadeh · Alessandro Lazaric · Sebastien Bubeck -
2011 Poster: Speedy Q-Learning »
Mohammad Gheshlaghi Azar · Remi Munos · Mohammad Ghavamzadeh · Hilbert J Kappen -
2010 Workshop: Machine Learning for Assistive Technologies »
Jesse Hoey · Pascal Poupart · Thomas Ploetz -
2010 Session: Spotlights Session 8 »
Pascal Poupart -
2010 Session: Oral Session 9 »
Pascal Poupart -
2010 Spotlight: LSTD with Random Projections »
Mohammad Ghavamzadeh · Alessandro Lazaric · Odalric-Ambrym Maillard · Remi Munos -
2010 Poster: LSTD with Random Projections »
Mohammad Ghavamzadeh · Alessandro Lazaric · Odalric-Ambrym Maillard · Remi Munos -
2009 Mini Symposium: Partially Observable Reinforcement Learning »
Marcus Hutter · Will Uther · Pascal Poupart -
2008 Poster: Robust Regression and Lasso »
Huan Xu · Constantine Caramanis · Shie Mannor -
2008 Spotlight: Robust Regression and Lasso »
Huan Xu · Constantine Caramanis · Shie Mannor -
2008 Poster: Regularized Policy Iteration »
Amir-massoud Farahmand · Mohammad Ghavamzadeh · Csaba Szepesvari · Shie Mannor -
2007 Spotlight: Incremental Natural Actor-Critic Algorithms »
Shalabh Bhatnagar · Richard Sutton · Mohammad Ghavamzadeh · Mark P Lee -
2007 Poster: Incremental Natural Actor-Critic Algorithms »
Shalabh Bhatnagar · Richard Sutton · Mohammad Ghavamzadeh · Mark P Lee -
2006 Workshop: User Adaptive Systems »
Shie Mannor -
2006 Poster: The Robustness-Performance Tradeoff in Markov Decision Processes »
Huan Xu · Shie Mannor -
2006 Poster: Bayesian Policy Gradient Algorithms »
Mohammad Ghavamzadeh · Yaakov Engel -
2006 Spotlight: The Robustness-Performance Tradeoff in Markov Decision Processes »
Huan Xu · Shie Mannor -
2006 Spotlight: Bayesian Policy Gradient Algorithms »
Mohammad Ghavamzadeh · Yaakov Engel -
2006 Poster: Automated Hierarchy Discovery for Planning in Partially Observable Domains »
Laurent Charlin · Pascal Poupart · Romy Shioda