Timezone: »
The field of computational biology has seen dramatic growth over the past few years, both in terms of new available data, new scientific questions, and new challenges for learning and inference. In particular, biological data is often relationally structured and highly diverse, well-suited to approaches that combine multiple weak evidence from heterogeneous sources. These data may include sequenced genomes of a variety of organisms, gene expression data from multiple technologies, protein expression data, protein sequence and 3D structural data, protein interactions, gene ontology and pathway databases, genetic variation data (such as SNPs), and an enormous amount of textual data in the biological and medical literature. New types of scientific and clinical problems require the development of novel supervised and unsupervised learning methods that can use these growing resources. The goal of this workshop is to present emerging problems and machine learning techniques in computational biology. We invited several speakers from the biology/bioinformatics community who will present current research problems in bioinformatics, and we invite contributed talks on novel learning approaches in computational biology. We encourage contributions describing either progress on new bioinformatics problems or work on established problems using methods that are substantially different from standard approaches. Kernel methods, graphical models, feature selection and other techniques applied to relevant bioinformatics problems would all be appropriate for the workshop.
Author Information
Gal Chechik (NVIDIA, Bar-Ilan University)
Christina Leslie (Memorial Sloan Kettering Cancer Center)
Quaid Morris (Memorial Sloan Kettering)
William S Noble (University of Washington)
Gunnar Rätsch (ETHZ)
More from the Same Authors
-
2021 : HiRID-ICU-Benchmark --- A Comprehensive Machine Learning Benchmark on High-resolution ICU Data »
Hugo Yèche · Rita Kuznetsova · Marc Zimmermann · Matthias Hüser · Xinrui Lyu · Martin Faltys · Gunnar Rätsch -
2021 : Covariate Shift of Latent Confounders in Imitation and Reinforcement Learning »
Guy Tennenholtz · Assaf Hallak · Gal Dalal · Shie Mannor · Gal Chechik · Uri Shalit -
2021 : Learning Single-Cell Perturbation Responses using Neural Optimal Transport »
Charlotte Bunne · Stefan Stark · Gabriele Gut · Andreas Krause · Gunnar Rätsch · Lucas Pelkmans · Kjong Lehmann -
2022 : Implementing Reinforcement Learning Datacenter Congestion Control in NVIDIA NICs »
Benjamin Fuhrer · Yuval Shpigelman · Chen Tessler · Shie Mannor · Gal Chechik · Eitan Zahavi · Gal Dalal -
2022 : SoftTreeMax: Policy Gradient with Tree Search »
Gal Dalal · Assaf Hallak · Shie Mannor · Gal Chechik -
2022 : Implementing Reinforcement Learning Datacenter Congestion Control in NVIDIA NICs »
Benjamin Fuhrer · Yuval Shpigelman · Chen Tessler · Shie Mannor · Gal Chechik · Eitan Zahavi · Gal Dalal -
2022 : On the Importance of Clinical Notes in Multi-modal Learning for EHR Data »
Severin Husmann · Hugo Yèche · Gunnar Rätsch · Rita Kuznetsova -
2022 Workshop: Learning from Time Series for Health »
Sana Tonekaboni · Thomas Hartvigsen · Satya Narayan Shukla · Gunnar Rätsch · Marzyeh Ghassemi · Anna Goldenberg -
2022 Poster: Invariance Learning in Deep Neural Networks with Differentiable Laplace Approximations »
Alexander Immer · Tycho van der Ouderaa · Gunnar Rätsch · Vincent Fortuin · Mark van der Wilk -
2022 Poster: Reinforcement Learning with a Terminator »
Guy Tennenholtz · Nadav Merlis · Lior Shani · Shie Mannor · Uri Shalit · Gal Chechik · Assaf Hallak · Gal Dalal -
2021 Poster: Learning Optimal Predictive Checklists »
Haoran Zhang · Quaid Morris · Berk Ustun · Marzyeh Ghassemi -
2021 Poster: Personalized Federated Learning With Gaussian Processes »
Idan Achituve · Aviv Shamsian · Aviv Navon · Gal Chechik · Ethan Fetaya -
2021 Poster: Improve Agents without Retraining: Parallel Tree Search with Off-Policy Correction »
Gal Dalal · Assaf Hallak · Steven Dalton · iuri frosio · Shie Mannor · Gal Chechik -
2020 : Christina Leslie »
Christina Leslie -
2020 Poster: A causal view of compositional zero-shot recognition »
Yuval Atzmon · Felix Kreuk · Uri Shalit · Gal Chechik -
2020 Spotlight: A causal view of compositional zero-shot recognition »
Yuval Atzmon · Felix Kreuk · Uri Shalit · Gal Chechik -
2019 : Poster session »
Sebastian Farquhar · Erik Daxberger · Andreas Look · Matt Benatan · Ruiyi Zhang · Marton Havasi · Fredrik Gustafsson · James A Brofos · Nabeel Seedat · Micha Livne · Ivan Ustyuzhaninov · Adam Cobb · Felix D McGregor · Patrick McClure · Tim R. Davidson · Gaurush Hiranandani · Sanjeev Arora · Masha Itkina · Didrik Nielsen · William Harvey · Matias Valdenegro-Toro · Stefano Peluchetti · Riccardo Moriconi · Tianyu Cui · Vaclav Smidl · Taylan Cemgil · Jack Fitzsimons · He Zhao · · mariana vargas vieyra · Apratim Bhattacharyya · Rahul Sharma · Geoffroy Dubourg-Felonneau · Jonathan Warrell · Slava Voloshynovskiy · Mihaela Rosca · Jiaming Song · Andrew Ross · Homa Fashandi · Ruiqi Gao · Hooshmand Shokri Razaghi · Joshua Chang · Zhenzhong Xiao · Vanessa Boehm · Giorgio Giannone · Ranganath Krishnan · Joe Davison · Arsenii Ashukha · Jeremiah Liu · Sicong (Sheldon) Huang · Evgenii Nikishin · Sunho Park · Nilesh Ahuja · Mahesh Subedar · · Artyom Gadetsky · Jhosimar Arias Figueroa · Tim G. J. Rudner · Waseem Aslam · Adrián Csiszárik · John Moberg · Ali Hebbal · Kathrin Grosse · Pekka Marttinen · Bang An · Hlynur Jónsson · Samuel Kessler · Abhishek Kumar · Mikhail Figurnov · Omesh Tickoo · Steindor Saemundsson · Ari Heljakka · Dániel Varga · Niklas Heim · Simone Rossi · Max Laves · Waseem Gharbieh · Nicholas Roberts · Luis Armando Pérez Rey · Matthew Willetts · Prithvijit Chakrabarty · Sumedh Ghaisas · Carl Shneider · Wray Buntine · Kamil Adamczewski · Xavier Gitiaux · Suwen Lin · Hao Fu · Gunnar Rätsch · Aidan Gomez · Erik Bodin · Dinh Phung · Lennart Svensson · Juliano Tusi Amaral Laganá Pinto · Milad Alizadeh · Jianzhun Du · Kevin Murphy · Beatrix Benkő · Shashaank Vattikuti · Jonathan Gordon · Christopher Kanan · Sontje Ihler · Darin Graham · Michael Teng · Louis Kirsch · Tomas Pevny · Taras Holotyak -
2018 Poster: Boosting Black Box Variational Inference »
Francesco Locatello · Gideon Dresdner · Rajiv Khanna · Isabel Valera · Gunnar Ratsch -
2018 Poster: Mapping Images to Scene Graphs with Permutation-Invariant Structured Prediction »
Roei Herzig · Moshiko Raboh · Gal Chechik · Jonathan Berant · Amir Globerson -
2018 Spotlight: Boosting Black Box Variational Inference »
Francesco Locatello · Gideon Dresdner · Rajiv Khanna · Isabel Valera · Gunnar Ratsch -
2017 Poster: Greedy Algorithms for Cone Constrained Optimization with Convergence Guarantees »
Francesco Locatello · Michael Tschannen · Gunnar Ratsch · Martin Jaggi -
2016 : CV @ Scale Challenges »
Manohar Paluri · Gal Chechik -
2016 Workshop: Large Scale Computer Vision Systems »
Manohar Paluri · Lorenzo Torresani · Gal Chechik · Dario Garcia · Du Tran -
2014 Workshop: Second Workshop on Transfer and Multi-Task Learning: Theory meets Practice »
Urun Dogan · Tatiana Tommasi · Yoshua Bengio · Francesco Orabona · Marius Kloft · Andres Munoz · Gunnar Rätsch · Hal Daumé III · Mehryar Mohri · Xuezhi Wang · Daniel Hernández-lobato · Song Liu · Thomas Unterthiner · Pascal Germain · Vinay P Namboodiri · Michael Goetz · Christopher Berlind · Sigurd Spieckermann · Marta Soare · Yujia Li · Vitaly Kuznetsov · Wenzhao Lian · Daniele Calandriello · Emilie Morvant -
2014 Workshop: Machine Learning for Clinical Data Analysis, Healthcare and Genomics »
Gunnar Rätsch · Madalina Fiterau · Julia Vogt -
2014 Workshop: Analyzing the omics of the brain »
Michael Hawrylycz · Gal Chechik · Mark Reimers -
2012 Workshop: Machine Learning in Computational Biology »
Jean-Philippe Vert · Anna Goldenberg · Christina Leslie -
2012 Session: Oral Session 4 »
Gunnar Rätsch -
2011 Workshop: Machine Learning in Computational Biology »
Jean-Philippe Vert · Gunnar Rätsch · Yanjun Qi · Tomer Hertz · Anna Goldenberg · Christina Leslie -
2011 Poster: Hierarchical Multitask Structured Output Learning for Large-scale Sequence Segmentation »
Nico Goernitz · Christian Widmer · Georg Zeller · Andre Kahles · Soeren Sonnenburg · Gunnar Rätsch -
2010 Workshop: Machine Learning in Computational Biology »
Gunnar Rätsch · Jean-Philippe Vert · Tomer Hertz · Yanjun Qi -
2010 Spotlight: Online Learning in The Manifold of Low-Rank Matrices »
Uri Shalit · Daphna Weinshall · Gal Chechik -
2010 Poster: Online Learning in The Manifold of Low-Rank Matrices »
Uri Shalit · Daphna Weinshall · Gal Chechik -
2009 Workshop: Machine Learning in Computational Biology »
Gal Chechik · Tomer Hertz · William S Noble · Yanjun Qi · Jean-Philippe Vert · Alexander Zien -
2009 Mini Symposium: Machine Learning in Computational Biology »
Yanjun Qi · Jean-Philippe Vert · Gal Chechik · Alexander Zien · Tomer Hertz · William S Noble -
2009 Poster: An Online Algorithm for Large Scale Image Similarity Learning »
Gal Chechik · Uri Shalit · Varun Sharma · Samy Bengio -
2008 Mini Symposium: Machine Learning in Computational Biology »
Gal Chechik · Christina Leslie · Quaid Morris · William S Noble · Gunnar Rätsch -
2008 Poster: A mixture model for the evolution of gene expression in non-homogeneous datasets »
Gerald Quon · Yee Whye Teh · Esther Chan · Michael Brudno · Tim Hughes · Quaid Morris -
2008 Poster: An empirical Analysis of Domain Adaptation Algorithms for Genomic Sequence Analysis »
Gabriele B Schweikert · Christian Widmer · Bernhard Schölkopf · Gunnar Rätsch -
2007 Workshop: Machine Learning in Computational Biology (Part 2) »
Gal Chechik · Christina Leslie · Quaid Morris · William S Noble · Gunnar Rätsch · Koji Tsuda -
2007 Workshop: Machine Learning in Computational Biology (Part 1) »
Gal Chechik · Christina Leslie · Quaid Morris · William S Noble · Gunnar Rätsch · Koji Tsuda -
2007 Session: Session 4: Probabilistic Models and Methods »
William S Noble -
2007 Spotlight: Boosting Algorithms for Maximizing the Soft Margin »
Manfred K. Warmuth · Karen Glocer · Gunnar Rätsch -
2007 Poster: Boosting Algorithms for Maximizing the Soft Margin »
Manfred K. Warmuth · Karen Glocer · Gunnar Rätsch -
2006 Workshop: New Problems and Methods in Computational Biology »
Gal Chechik · Quaid Morris · Koji Tsuda · Gunnar Rätsch · Christina Leslie · William S Noble -
2006 Poster: Max-margin classification of incomplete data »
Gal Chechik · Geremy Heitz · Gal Elidan · Pieter Abbeel · Daphne Koller -
2006 Poster: Large Scale Hidden Semi-Markov SVMs »
Gunnar Rätsch · Soeren Sonnenburg -
2006 Poster: Temporal and Cross-Subject Probabilistic Models for fMRI Prediction Task »
Alexis Battle · Gal Chechik · Daphne Koller -
2006 Spotlight: Max-margin classification of incomplete data »
Gal Chechik · Geremy Heitz · Gal Elidan · Pieter Abbeel · Daphne Koller -
2006 Talk: Temporal and Cross-Subject Probabilistic Models for fMRI Prediction Task »
Alexis Battle · Gal Chechik · Daphne Koller -
2006 Demonstration: SHOGUN Machine Learning Toolbox »
Soeren Sonnenburg · Gunnar Rätsch