Timezone: »

Modeling image patches with a directed hierarchy of Markov random fields
Simon Osindero · Geoffrey E Hinton

Mon Dec 03 10:30 AM -- 10:40 AM (PST) @

We describe an efficient learning procedure for multilayer generative models that combine the best aspects of Markov random fields and deep, directed belief nets. The generative models can be learned one layer at a time and when learning is complete they have a very fast inference procedure for computing a good approximation to the posterior distribution in all of the hidden layers. Each hidden layer has its own MRF whose energy function is modulated by the top-down directed connections from the layer above. To generate from the model, each layer in turn must settle to equilibrium given its top-down input. We show that this type of model is good at capturing the statistics of patches of natural images.

Author Information

Simon Osindero (Flickr / Yahoo!)
Geoffrey E Hinton (Google & University of Toronto)

Geoffrey Hinton received his PhD in Artificial Intelligence from Edinburgh in 1978 and spent five years as a faculty member at Carnegie-Mellon where he pioneered back-propagation, Boltzmann machines and distributed representations of words. In 1987 he became a fellow of the Canadian Institute for Advanced Research and moved to the University of Toronto. In 1998 he founded the Gatsby Computational Neuroscience Unit at University College London, returning to the University of Toronto in 2001. His group at the University of Toronto then used deep learning to change the way speech recognition and object recognition are done. He currently splits his time between the University of Toronto and Google. In 2010 he received the NSERC Herzberg Gold Medal, Canada's top award in Science and Engineering.

More from the Same Authors