Timezone: »

Fixing Max-Product: Convergent Message Passing Algorithms for MAP LP-Relaxations
Amir Globerson · Tommi Jaakkola

Mon Dec 03 10:30 AM -- 10:40 AM (PST) @ None #None

We present a novel message passing algorithm for approximating the MAP problem in graphical models. The algorithm is similar in structure to max-product but unlike max-product it always converges, and can be proven to find the exact MAP solution in various settings. The algorithm is derived via block coordinate descent in a dual of the LP relaxation of MAP, but does not require any tunable parameters such as step size or tree weights. We also describe a generalization of the method to cluster based potentials. The new method is tested on synthetic and real-world problems, and compares favorably with previous approaches.

Author Information

Amir Globerson (Tel Aviv University, Google)

Amir Globerson is senior lecturer at the School of Engineering and Computer Science at the Hebrew University. He received a PhD in computational neuroscience from the Hebrew University, and was a Rothschild postdoctoral fellow at MIT. He joined the Hebrew University in 2008. His research interests include graphical models and probabilistic inference, convex optimization, robust learning and natural language processing.

Tommi Jaakkola (MIT)

Tommi Jaakkola is a professor of Electrical Engineering and Computer Science at MIT. He received an M.Sc. degree in theoretical physics from Helsinki University of Technology, and Ph.D. from MIT in computational neuroscience. Following a Sloan postdoctoral fellowship in computational molecular biology, he joined the MIT faculty in 1998. His research interests include statistical inference, graphical models, and large scale modern estimation problems with predominantly incomplete data.

More from the Same Authors