Timezone: »
We present a theoretical study on the discriminative clustering framework, recently proposed for simultaneous subspace selection via linear discriminant analysis (LDA) and clustering. Empirical results have shown its favorable performance in comparison with several other popular clustering algorithms. However, the inherent relationship between subspace selection and clustering in this framework is not well understood, due to the iterative nature of the algorithm. We show in this paper that this iterative subspace selection and clustering is equivalent to kernel K-means with a specific kernel Gram matrix. This provides significant and new insights into the nature of this subspace selection procedure. Based on this equivalence relationship, we propose the Discriminative K-means (DisKmeans) algorithm for simultaneous LDA subspace selection and clustering, as well as an automatic parameter estimation procedure. We also present the nonlinear extension of DisKmeans using kernels. We show that the learning of the kernel matrix over a convex set of pre-specified kernel matrices can be incorporated into the clustering formulation. The connection between DisKmeans and several other clustering algorithms is also analyzed. The presented theories and algorithms are evaluated through experiments on a collection of benchmark data sets.
Author Information
Jieping Ye (Arizona State University)
Zheng Zhao (Arizona State University)
Mingrui Wu (Yahoo! Inc.)
More from the Same Authors
-
2014 Poster: Two-Layer Feature Reduction for Sparse-Group Lasso via Decomposition of Convex Sets »
Jie Wang · Jieping Ye -
2014 Spotlight: Two-Layer Feature Reduction for Sparse-Group Lasso via Decomposition of Convex Sets »
Jie Wang · Jieping Ye -
2014 Poster: A Safe Screening Rule for Sparse Logistic Regression »
Jie Wang · Jiayu Zhou · Jun Liu · Peter Wonka · Jieping Ye -
2013 Poster: Lasso Screening Rules via Dual Polytope Projection »
Jie Wang · Jiayu Zhou · Peter Wonka · Jieping Ye -
2013 Spotlight: Lasso Screening Rules via Dual Polytope Projection »
Jie Wang · Jiayu Zhou · Peter Wonka · Jieping Ye -
2012 Poster: Multi-Stage Multi-Task Feature Learning »
Pinghua Gong · Jieping Ye · Changshui Zhang -
2012 Poster: Multi-task Vector Field Learning »
Binbin Lin · Sen Yang · Chiyuan Zhang · Jieping Ye · Xiaofei He -
2012 Spotlight: Multi-Stage Multi-Task Feature Learning »
Pinghua Gong · Jieping Ye · Changshui Zhang -
2012 Poster: Generalization Bounds for Domain Adaptation »
Chao Zhang · Jieping Ye · Lei Zhang -
2011 Poster: Clustered Multi-Task Learning Via Alternating Structure Optimization »
Jiayu Zhou · Jianhui Chen · Jieping Ye -
2011 Poster: Efficient Methods for Overlapping Group Lasso »
Lei Yuan · Jun Liu · Jieping Ye -
2011 Poster: Projection onto A Nonnegative Max-Heap »
Jun Liu · Liang Sun · Jieping Ye -
2011 Spotlight: Projection onto A Nonnegative Max-Heap »
Jun Liu · Liang Sun · Jieping Ye -
2011 Poster: A Two-Stage Weighting Framework for Multi-Source Domain Adaptation »
Qian Sun · Rita Chattopadhyay · Sethuraman Panchanathan · Jieping Ye -
2011 Poster: Identifying Alzheimer's Disease-Related Brain Regions from Multi-Modality Neuroimaging Data using Sparse Composite Linear Discrimination Analysis »
Shuai Huang · Jing Li · Jieping Ye · Teresa Wu · Kewei Chen · Adam Fleisher · Eric Reiman -
2011 Spotlight: Identifying Alzheimer's Disease-Related Brain Regions from Multi-Modality Neuroimaging Data using Sparse Composite Linear Discrimination Analysis »
Shuai Huang · Jing Li · Jieping Ye · Teresa Wu · Kewei Chen · Adam Fleisher · Eric Reiman -
2010 Poster: Moreau-Yosida Regularization for Grouped Tree Structure Learning »
Jun Liu · Jieping Ye -
2010 Poster: Multi-Stage Dantzig Selector »
Ji Liu · Peter Wonka · Jieping Ye -
2009 Poster: Learning Brain Connectivity of Alzheimer's Disease from Neuroimaging Data »
Shuai Huang · Jing Li · Liang Sun · Jun Liu · Teresa Wu · Kewei Chen · Adam Fleisher · Eric Reiman · Jieping Ye -
2009 Spotlight: Learning Brain Connectivity of Alzheimer's Disease from Neuroimaging Data »
Shuai Huang · Jing Li · Liang Sun · Jun Liu · Teresa Wu · Kewei Chen · Adam Fleisher · Eric Reiman · Jieping Ye -
2009 Poster: Efficient Recovery of Jointly Sparse Vectors »
Liang Sun · Jun Liu · Jianhui Chen · Jieping Ye -
2008 Poster: Multi-label Multiple Kernel Learning »
Shuiwang Ji · Liang Sun · Rong Jin · Jieping Ye -
2008 Spotlight: Multi-label Multiple Kernel Learning »
Shuiwang Ji · Liang Sun · Rong Jin · Jieping Ye -
2006 Poster: A Local Learning Approach for Clustering »
Mingrui Wu · Bernhard Schölkopf