Timezone: »
Poster
Simplified Rules and Theoretical Analysis for Information Bottleneck Optimization and PCA with Spiking Neurons
Lars Buesing · Wolfgang Maass
We show that under suitable assumptions (primarily linearization) a simple and perspicuous online learning rule for Information Bottleneck optimization with spiking neurons can be derived. This rule performs on common benchmark tasks as well as a rather complex rule that has previously been proposed \cite{KlampflETAL:07b}. Furthermore, the transparency of this new learning rule makes a theoretical analysis of its convergence properties feasible. A variation of this learning rule (with sign changes) provides a theoretically founded method for performing Principal Component Analysis {(PCA)} with spiking neurons. By applying this rule to an ensemble of neurons, different principal components of the input can be extracted. In addition, it is possible to preferentially extract those principal components from incoming signals $X$ that are related or are not related to some additional target signal $Y_T$. In a biological interpretation, this target signal $Y_T$ (also called relevance variable) could represent proprioceptive feedback, input from other sensory modalities, or top-down signals.
Author Information
Lars Buesing (Columbia University)
Wolfgang Maass (Graz University of Technology - IGI)
More from the Same Authors
-
2019 : Poster Session »
Pravish Sainath · Mohamed Akrout · Charles Delahunt · Nathan Kutz · Guangyu Robert Yang · Joseph Marino · L F Abbott · Nicolas Vecoven · Damien Ernst · andrew warrington · Michael Kagan · Kyunghyun Cho · Kameron Harris · Leopold Grinberg · John J. Hopfield · Dmitry Krotov · Taliah Muhammad · Erick Cobos · Edgar Walker · Jacob Reimer · Andreas Tolias · Alexander Ecker · Janaki Sheth · Yu Zhang · Maciej Wołczyk · Jacek Tabor · Szymon Maszke · Roman Pogodin · Dane Corneil · Wulfram Gerstner · Baihan Lin · Guillermo Cecchi · Jenna M Reinen · Irina Rish · Guillaume Bellec · Darjan Salaj · Anand Subramoney · Wolfgang Maass · Yueqi Wang · Ari Pakman · Jin Hyung Lee · Liam Paninski · Bryan Tripp · Colin Graber · Alex Schwing · Luke Prince · Gabriel Ocker · Michael Buice · Benjamin Lansdell · Konrad Kording · Jack Lindsey · Terrence Sejnowski · Matthew Farrell · Eric Shea-Brown · Nicolas Farrugia · Victor Nepveu · Jiwoong Im · Kristin Branson · Brian Hu · Ramakrishnan Iyer · Stefan Mihalas · Sneha Aenugu · Hananel Hazan · Sihui Dai · Tan Nguyen · Doris Tsao · Richard Baraniuk · Anima Anandkumar · Hidenori Tanaka · Aran Nayebi · Stephen Baccus · Surya Ganguli · Dean Pospisil · Eilif Muller · Jeffrey S Cheng · Gaël Varoquaux · Kamalaker Dadi · Dimitrios C Gklezakos · Rajesh PN Rao · Anand Louis · Christos Papadimitriou · Santosh Vempala · Naganand Yadati · Daniel Zdeblick · Daniela M Witten · Nicholas Roberts · Vinay Prabhu · Pierre Bellec · Poornima Ramesh · Jakob H Macke · Santiago Cadena · Guillaume Bellec · Franz Scherr · Owen Marschall · Robert Kim · Hannes Rapp · Marcio Fonseca · Oliver Armitage · Jiwoong Im · Thomas Hardcastle · Abhishek Sharma · Wyeth Bair · Adrian Valente · Shane Shang · Merav Stern · Rutuja Patil · Peter Wang · Sruthi Gorantla · Peter Stratton · Tristan Edwards · Jialin Lu · Martin Ester · Yurii Vlasov · Siavash Golkar -
2019 : Contributed Talk #2: Slow processes of neurons enable a biologically plausible approximation to policy gradient »
Wolfgang Maass -
2019 : Coffee Break & Poster Session »
Samia Mohinta · Andrea Agostinelli · Alexandra Moringen · Jee Hang Lee · Yat Long Lo · Wolfgang Maass · Blue Sheffer · Colin Bredenberg · Benjamin Eysenbach · Liyu Xia · Efstratios Markou · Jan Lichtenberg · Pierre Richemond · Tony Zhang · JB Lanier · Baihan Lin · William Fedus · Glen Berseth · Marta Sarrico · Matthew Crosby · Stephen McAleer · Sina Ghiassian · Franz Scherr · Guillaume Bellec · Darjan Salaj · Arinbjörn Kolbeinsson · Matthew Rosenberg · Jaehoon Shin · Sang Wan Lee · Guillermo Cecchi · Irina Rish · Elias Hajek -
2018 Poster: Smoothed Analysis of Discrete Tensor Decomposition and Assemblies of Neurons »
Nima Anari · Constantinos Daskalakis · Wolfgang Maass · Christos Papadimitriou · Amin Saberi · Santosh Vempala -
2018 Poster: Long short-term memory and Learning-to-learn in networks of spiking neurons »
Guillaume Bellec · Darjan Salaj · Anand Subramoney · Robert Legenstein · Wolfgang Maass -
2016 : Reward-based self-configuration of networks of spiking neurons »
Wolfgang Maass -
2015 Poster: Synaptic Sampling: A Bayesian Approach to Neural Network Plasticity and Rewiring »
David Kappel · Stefan Habenschuss · Robert Legenstein · Wolfgang Maass -
2014 Poster: Clustered factor analysis of multineuronal spike data »
Lars Buesing · Timothy A Machado · John P Cunningham · Liam Paninski -
2014 Spotlight: Clustered factor analysis of multineuronal spike data »
Lars Buesing · Timothy A Machado · John P Cunningham · Liam Paninski -
2013 Workshop: Acquiring and Analyzing the Activity of Large Neural Ensembles »
Srinivas C Turaga · Lars Buesing · Maneesh Sahani · Jakob H Macke -
2013 Poster: Inferring neural population dynamics from multiple partial recordings of the same neural circuit »
Srinivas C Turaga · Lars Buesing · Adam M Packer · Henry Dalgleish · Noah Pettit · Michael Hausser · Jakob H Macke -
2013 Spotlight: Inferring neural population dynamics from multiple partial recordings of the same neural circuit »
Srinivas C Turaga · Lars Buesing · Adam M Packer · Henry Dalgleish · Noah Pettit · Michael Hausser · Jakob H Macke -
2012 Poster: Spectral learning of linear dynamics from generalised-linear observations with application to neural population data »
Lars Buesing · Jakob H Macke · Maneesh Sahani -
2012 Oral: Spectral learning of linear dynamics from generalised-linear observations with application to neural population data »
Lars Buesing · Jakob H Macke · Maneesh Sahani -
2011 Oral: Empirical models of spiking in neural populations »
Jakob H Macke · Lars Buesing · John P Cunningham · Byron M Yu · Krishna V Shenoy · Maneesh Sahani -
2011 Poster: Empirical models of spiking in neural populations »
Jakob H Macke · Lars Buesing · John P Cunningham · Byron M Yu · Krishna V Shenoy · Maneesh Sahani -
2009 Poster: Functional network reorganization in motor cortex can be explained by reward-modulated Hebbian learning »
Robert Legenstein · Steven Chase · Andrew B Schwartz · Wolfgang Maass -
2009 Oral: Functional Network Reorganization In Motor Cortex Can Be Explained by Reward-Modulated Hebbian Learning »
Robert Legenstein · Steven Chase · Andrew B Schwartz · Wolfgang Maass -
2009 Poster: STDP enables spiking neurons to detect hidden causes of their inputs »
Bernhard Nessler · Michael Pfeiffer · Wolfgang Maass -
2009 Spotlight: STDP enables spiking neurons to detect hidden causes of their inputs »
Bernhard Nessler · Michael Pfeiffer · Wolfgang Maass -
2009 Poster: Replacing supervised classification learning by Slow Feature Analysis in spiking neural networks »
Stefan Klampfl · Wolfgang Maass -
2009 Spotlight: Replacing supervised classification learning by Slow Feature Analysis in spiking neural networks »
Stefan Klampfl · Wolfgang Maass -
2008 Poster: On Computational Power and the Order-Chaos Phase Transition in Reservoir Computing »
Benjamin Schrauwen · Lars Buesing · Robert Legenstein -
2008 Oral: On Computational Power and the Order-Chaos Phase Transition in Reservoir Computing »
Benjamin Schrauwen · Lars Buesing · Robert Legenstein -
2008 Poster: Hebbian Learning of Bayes Optimal Decisions »
Bernhard Nessler · Michael Pfeiffer · Wolfgang Maass -
2007 Spotlight: Theoretical Analysis of Learning with Reward-Modulated Spike-Timing-Dependent Plasticity »
Robert Legenstein · Dejan Pecevski · Wolfgang Maass -
2007 Poster: Theoretical Analysis of Learning with Reward-Modulated Spike-Timing-Dependent Plasticity »
Robert Legenstein · Dejan Pecevski · Wolfgang Maass -
2006 Workshop: Echo State Networks and Liquid State Machines »
Herbert Jaeger · Wolfgang Maass · Jose C Principe -
2006 Poster: Temporal dynamics of information content carried by neurons in the primary visual cortex »
Danko Nikolic · Stefan Haeusler · Wolf Singer · Wolfgang Maass -
2006 Poster: Information Bottleneck Optimization and Independent Component Extraction with Spiking Neurons »
Stefan Klampfl · Robert Legenstein · Wolfgang Maass