Timezone: »
Stimulus selectivity of sensory neurons is often characterized by estimating their receptive field properties such as orientation selectivity. Receptive fields are usually derived from the mean (or covariance) of the spike-triggered stimulus ensemble. This approach treats each spike as an independent message but does not take into account that information might be conveyed through patterns of neural activity that are distributed across space or time. Can we find a concise description for the processing of a whole population of neurons analogous to the receptive field for single neurons? Here, we present a generalization of the linear receptive field which is not bound to be triggered on individual spikes but can be meaningfully linked to distributed response patterns. More precisely, we seek to identify those stimulus features and the corresponding patterns of neural activity that are most reliably coupled. We use an extension of reverse-correlation methods based on canonical correlation analysis. The resulting population receptive fields span the subspace of stimuli that is most informative about the population response. We evaluate our approach using both neuronal models and multi-electrode recordings from rabbit retinal ganglion cells. We show how the model can be extended to capture nonlinear stimulus-response relationships using kernel canonical correlation analysis, which makes it possible to test different coding mechanisms. Our technique can also be used to calculate receptive fields from multi-dimensional neural measurements such as those obtained from dynamic imaging methods.
Author Information
Jakob H Macke (University of Tübingen & MPI IS Tübingen)
Günther Zeck (Max Planck Institute of Neurobiology)
Matthias Bethge (University of Tübingen)
More from the Same Authors
-
2022 Poster: Truncated proposals for scalable and hassle-free simulation-based inference »
Michael Deistler · Pedro Goncalves · Jakob H Macke -
2022 Poster: Efficient identification of informative features in simulation-based inference »
Jonas Beck · Michael Deistler · Yves Bernaerts · Jakob H Macke · Philipp Berens -
2019 : Poster Session »
Pravish Sainath · Mohamed Akrout · Charles Delahunt · Nathan Kutz · Guangyu Robert Yang · Joseph Marino · L F Abbott · Nicolas Vecoven · Damien Ernst · andrew warrington · Michael Kagan · Kyunghyun Cho · Kameron Harris · Leopold Grinberg · John J. Hopfield · Dmitry Krotov · Taliah Muhammad · Erick Cobos · Edgar Walker · Jacob Reimer · Andreas Tolias · Alexander Ecker · Janaki Sheth · Yu Zhang · Maciej Wołczyk · Jacek Tabor · Szymon Maszke · Roman Pogodin · Dane Corneil · Wulfram Gerstner · Baihan Lin · Guillermo Cecchi · Jenna M Reinen · Irina Rish · Guillaume Bellec · Darjan Salaj · Anand Subramoney · Wolfgang Maass · Yueqi Wang · Ari Pakman · Jin Hyung Lee · Liam Paninski · Bryan Tripp · Colin Graber · Alex Schwing · Luke Prince · Gabriel Ocker · Michael Buice · Benjamin Lansdell · Konrad Kording · Jack Lindsey · Terrence Sejnowski · Matthew Farrell · Eric Shea-Brown · Nicolas Farrugia · Victor Nepveu · Jiwoong Im · Kristin Branson · Brian Hu · Ramakrishnan Iyer · Stefan Mihalas · Sneha Aenugu · Hananel Hazan · Sihui Dai · Tan Nguyen · Doris Tsao · Richard Baraniuk · Anima Anandkumar · Hidenori Tanaka · Aran Nayebi · Stephen Baccus · Surya Ganguli · Dean Pospisil · Eilif Muller · Jeffrey S Cheng · Gaël Varoquaux · Kamalaker Dadi · Dimitrios C Gklezakos · Rajesh PN Rao · Anand Louis · Christos Papadimitriou · Santosh Vempala · Naganand Yadati · Daniel Zdeblick · Daniela M Witten · Nicholas Roberts · Vinay Prabhu · Pierre Bellec · Poornima Ramesh · Jakob H Macke · Santiago Cadena · Guillaume Bellec · Franz Scherr · Owen Marschall · Robert Kim · Hannes Rapp · Marcio Fonseca · Oliver Armitage · Jiwoong Im · Thomas Hardcastle · Abhishek Sharma · Wyeth Bair · Adrian Valente · Shane Shang · Merav Stern · Rutuja Patil · Peter Wang · Sruthi Gorantla · Peter Stratton · Tristan Edwards · Jialin Lu · Martin Ester · Yurii Vlasov · Siavash Golkar -
2019 Poster: Intrinsic dimension of data representations in deep neural networks »
Alessio Ansuini · Alessandro Laio · Jakob H Macke · Davide Zoccolan -
2018 : Adversarial Vision Challenge: Results of the Adversarial Vision Challenge »
Wieland Brendel · Jonas Rauber · Marcel Salathé · Alexey Kurakin · Nicolas Papernot · Sharada Mohanty · Matthias Bethge -
2017 : DeepArt competition »
Alexander Ecker · Leon A Gatys · Matthias Bethge -
2017 Spotlight: Fast amortized inference of neural activity from calcium imaging data with variational autoencoders »
Artur Speiser · Jinyao Yan · Evan Archer · Lars Buesing · Srinivas C Turaga · Jakob H Macke -
2017 Poster: Fast amortized inference of neural activity from calcium imaging data with variational autoencoders »
Artur Speiser · Jinyao Yan · Evan Archer · Lars Buesing · Srinivas C Turaga · Jakob H Macke -
2017 Poster: Extracting low-dimensional dynamics from multiple large-scale neural population recordings by learning to predict correlations »
Marcel Nonnenmacher · Srinivas C Turaga · Jakob H Macke -
2017 Poster: Flexible statistical inference for mechanistic models of neural dynamics »
Jan-Matthis Lueckmann · Pedro Goncalves · Giacomo Bassetto · Kaan Öcal · Marcel Nonnenmacher · Jakob H Macke -
2017 Poster: Neural system identification for large populations separating “what” and “where” »
David Klindt · Alexander Ecker · Thomas Euler · Matthias Bethge -
2016 : From Brains to Bits and Back Again »
Yoshua Bengio · Terrence Sejnowski · Christos H Papadimitriou · Jakob H Macke · Demis Hassabis · Alyson Fletcher · Andreas Tolias · Jascha Sohl-Dickstein · Konrad P Koerding -
2016 : Matthias Bethge - Texture perception in humans and machines »
Matthias Bethge -
2016 Workshop: Brains and Bits: Neuroscience meets Machine Learning »
Alyson Fletcher · Eva Dyer · Jascha Sohl-Dickstein · Joshua T Vogelstein · Konrad Koerding · Jakob H Macke -
2015 : Correlations and Signatures of Criticality in Neural Population Models »
Jakob H Macke -
2015 Workshop: Statistical Methods for Understanding Neural Systems »
Alyson Fletcher · Jakob H Macke · Ryan Adams · Jascha Sohl-Dickstein -
2015 Poster: Unlocking neural population non-stationarities using hierarchical dynamics models »
Mijung Park · Gergo Bohner · Jakob H Macke -
2015 Poster: Texture Synthesis Using Convolutional Neural Networks »
Leon A Gatys · Alexander Ecker · Matthias Bethge -
2015 Poster: Generative Image Modeling Using Spatial LSTMs »
Lucas Theis · Matthias Bethge -
2014 Workshop: Large scale optical physiology: From data-acquisition to models of neural coding »
Il Memming Park · Jakob H Macke · Ferran Diego Andilla · Eftychios Pnevmatikakis · Jeremy Freeman -
2014 Poster: A Bayesian model for identifying hierarchically organised states in neural population activity »
Patrick Putzky · Florian Franzen · Giacomo Bassetto · Jakob H Macke -
2014 Spotlight: A Bayesian model for identifying hierarchically organised states in neural population activity »
Patrick Putzky · Florian Franzen · Giacomo Bassetto · Jakob H Macke -
2014 Poster: Low-dimensional models of neural population activity in sensory cortical circuits »
Evan Archer · Urs Koster · Jonathan W Pillow · Jakob H Macke -
2013 Workshop: Acquiring and Analyzing the Activity of Large Neural Ensembles »
Srinivas C Turaga · Lars Buesing · Maneesh Sahani · Jakob H Macke -
2013 Poster: Inferring neural population dynamics from multiple partial recordings of the same neural circuit »
Srinivas C Turaga · Lars Buesing · Adam M Packer · Henry Dalgleish · Noah Pettit · Michael Hausser · Jakob H Macke -
2013 Spotlight: Inferring neural population dynamics from multiple partial recordings of the same neural circuit »
Srinivas C Turaga · Lars Buesing · Adam M Packer · Henry Dalgleish · Noah Pettit · Michael Hausser · Jakob H Macke -
2012 Poster: Training sparse natural image models with a fast Gibbs sampler of an extended state space »
Lucas Theis · Jascha Sohl-Dickstein · Matthias Bethge -
2012 Poster: Spectral learning of linear dynamics from generalised-linear observations with application to neural population data »
Lars Buesing · Jakob H Macke · Maneesh Sahani -
2012 Oral: Spectral learning of linear dynamics from generalised-linear observations with application to neural population data »
Lars Buesing · Jakob H Macke · Maneesh Sahani -
2011 Oral: Empirical models of spiking in neural populations »
Jakob H Macke · Lars Buesing · John P Cunningham · Byron M Yu · Krishna V Shenoy · Maneesh Sahani -
2011 Poster: Empirical models of spiking in neural populations »
Jakob H Macke · Lars Buesing · John P Cunningham · Byron M Yu · Krishna V Shenoy · Maneesh Sahani -
2011 Poster: How biased are maximum entropy models? »
Jakob H Macke · Iain Murray · Peter E Latham -
2010 Poster: Evaluating neuronal codes for inference using Fisher information »
Ralf Haefner · Matthias Bethge -
2009 Poster: Hierarchical Modeling of Local Image Features through $L_p$-Nested Symmetric Distributions »
Fabian H Sinz · Eero Simoncelli · Matthias Bethge -
2009 Poster: Neurometric function analysis of population codes »
Philipp Berens · Sebastian Gerwinn · Alexander S Ecker · Matthias Bethge -
2009 Poster: A joint maximum-entropy model for binary neural population patterns and continuous signals »
Sebastian Gerwinn · Philipp Berens · Matthias Bethge -
2009 Spotlight: A joint maximum-entropy model for binary neural population patterns and continuous signals »
Sebastian Gerwinn · Philipp Berens · Matthias Bethge -
2009 Poster: Bayesian estimation of orientation preference maps »
Jakob H Macke · Sebastian Gerwinn · Leonard White · Matthias Kaschube · Matthias Bethge -
2008 Poster: The Conjoint Effect of Divisive Normalization and Orientation Selectivity on Redundancy Reduction »
Fabian H Sinz · Matthias Bethge -
2008 Spotlight: The Conjoint Effect of Divisive Normalization and Orientation Selectivity on Redundancy Reduction »
Fabian H Sinz · Matthias Bethge -
2007 Oral: Bayesian Inference for Spiking Neuron Models with a Sparsity Prior »
Sebastian Gerwinn · Jakob H Macke · Matthias Seeger · Matthias Bethge -
2007 Spotlight: Near-Maximum Entropy Models for Binary Neural Representations of Natural Images »
Matthias Bethge · Philipp Berens -
2007 Poster: Near-Maximum Entropy Models for Binary Neural Representations of Natural Images »
Matthias Bethge · Philipp Berens -
2007 Poster: Bayesian Inference for Spiking Neuron Models with a Sparsity Prior »
Sebastian Gerwinn · Jakob H Macke · Matthias Seeger · Matthias Bethge -
2006 Poster: Inducing Metric Violations in Human Similarity Judgements »
Julian Laub · Jakob H Macke · Klaus-Robert Müller · Felix A Wichmann