Timezone: »
Point process encoding models provide powerful statistical methods for understanding the responses of neurons to sensory stimuli. Although these models have been successfully applied to responses of neurons in the early sensory pathway, they have fared less well as a models of responses in deeper brain areas, as they do not easily take into account multiple stages of processing. Here we introduce a new twist on this approach: we include unobserved as well as observed spike trains. This provides us with a more powerful model, and thus more flexibility in fitting data. More importantly, it allows us to estimate connectivity patterns among neurons (both observed and unobserved), and so should give insight into how networks process sensory input. We demonstrate the model on a simple toy network consisting of two neurons. The formalism, based on variational EM, can be easily extended to larger networks.
Author Information
Jonathan W Pillow (UT Austin)
Jonathan Pillow is an assistant professor in Psychology and Neurobiology at the University of Texas at Austin. He graduated from the University of Arizona in 1997 with a degree in mathematics and philosophy, and was a U.S. Fulbright fellow in Morocco in 1998. He received his Ph.D. in neuroscience from NYU in 2005, and was a Royal Society postdoctoral reserach fellow at the Gatsby Computational Neuroscience Unit, UCL from 2005 to 2008. His recent work involves statistical methods for understanding the neural code in single neurons and neural populations, and his lab conducts psychophysical experiments designed to test Bayesian models of human sensory perception.
Peter E Latham (Gatsby Unit, UCL)
Related Events (a corresponding poster, oral, or spotlight)
-
2007 Poster: Neural characterization in partially observed populations of spiking neurons »
Wed. Dec 5th 06:30 -- 06:40 PM Room
More from the Same Authors
-
2022 Poster: On the Stability and Scalability of Node Perturbation Learning »
Naoki Hiratani · Yash Mehta · Timothy Lillicrap · Peter E Latham -
2021 Poster: Powerpropagation: A sparsity inducing weight reparameterisation »
Jonathan Richard Schwarz · Siddhant Jayakumar · Razvan Pascanu · Peter E Latham · Yee Teh -
2021 Poster: Towards Biologically Plausible Convolutional Networks »
Roman Pogodin · Yash Mehta · Timothy Lillicrap · Peter E Latham -
2020 Poster: Kernelized information bottleneck leads to biologically plausible 3-factor Hebbian learning in deep networks »
Roman Pogodin · Peter E Latham -
2016 : Jonathan Pillow : Scalable Inference for Structured Hierarchical Receptive Field Models »
Jonathan W Pillow -
2014 Poster: Optimal prior-dependent neural population codes under shared input noise »
Agnieszka Grabska-Barwinska · Jonathan W Pillow -
2014 Poster: Inferring sparse representations of continuous signals with continuous orthogonal matching pursuit »
Karin C Knudson · Jacob Yates · Alexander Huk · Jonathan W Pillow -
2014 Poster: Inferring synaptic conductances from spike trains with a biophysically inspired point process model »
Kenneth W Latimer · E.J. Chichilnisky · Fred Rieke · Jonathan W Pillow -
2014 Poster: Low-dimensional models of neural population activity in sensory cortical circuits »
Evan Archer · Urs Koster · Jonathan W Pillow · Jakob H Macke -
2014 Poster: Sparse Bayesian structure learning with dependent relevance determination prior »
Anqi Wu · Mijung Park · Sanmi Koyejo · Jonathan W Pillow -
2013 Poster: Spike train entropy-rate estimation using hierarchical Dirichlet process priors »
Karin C Knudson · Jonathan W Pillow -
2013 Poster: Bayesian entropy estimation for binary spike train data using parametric prior knowledge »
Evan Archer · Il Memming Park · Jonathan W Pillow -
2013 Poster: Demixing odors - fast inference in olfaction »
Agnieszka Grabska-Barwinska · Jeff Beck · Alexandre Pouget · Peter E Latham -
2013 Poster: Universal models for binary spike patterns using centered Dirichlet processes »
Il Memming Park · Evan Archer · Kenneth W Latimer · Jonathan W Pillow -
2013 Spotlight: Demixing odors - fast inference in olfaction »
Agnieszka Grabska-Barwinska · Jeff Beck · Alexandre Pouget · Peter E Latham -
2013 Spotlight: Bayesian entropy estimation for binary spike train data using parametric prior knowledge »
Evan Archer · Il Memming Park · Jonathan W Pillow -
2013 Poster: Spectral methods for neural characterization using generalized quadratic models »
Il Memming Park · Evan Archer · Nicholas Priebe · Jonathan W Pillow -
2013 Poster: Bayesian inference for low rank spatiotemporal neural receptive fields »
Mijung Park · Jonathan W Pillow -
2012 Poster: Fully Bayesian inference for neural models with negative-binomial spiking »
Jonathan W Pillow · James Scott -
2012 Poster: Bayesian active learning with localized priors for fast receptive field characterization »
Mijung Park · Jonathan W Pillow -
2012 Poster: Bayesian estimation of discrete entropy with mixtures of stick-breaking priors »
Evan Archer · Jonathan W Pillow · Il Memming Park -
2011 Session: Oral Session 13 »
Jonathan W Pillow -
2011 Poster: Bayesian Spike-Triggered Covariance Analysis »
Il Memming Park · Jonathan W Pillow -
2011 Poster: Active learning of neural response functions with Gaussian processes »
Mijung Park · Greg Horwitz · Jonathan W Pillow -
2011 Spotlight: Active learning of neural response functions with Gaussian processes »
Mijung Park · Greg Horwitz · Jonathan W Pillow -
2011 Poster: How biased are maximum entropy models? »
Jakob H Macke · Iain Murray · Peter E Latham -
2011 Tutorial: Flexible, Multivariate Point Process Models for Unlocking the Neural Code »
Jonathan W Pillow -
2009 Oral: Time-rescaling Methods for the Estimation and Assessment of Non-Poisson Neural Encoding Models »
Jonathan W Pillow -
2009 Poster: Time-rescaling methods for the estimation and assessment of non-Poisson neural encoding models »
Jonathan W Pillow -
2008 Poster: Characterizing neural dependencies with Poisson copula models »
Pietro Berkes · Frank Wood · Jonathan W Pillow -
2008 Spotlight: Characterizing neural dependencies with Poisson copula models »
Pietro Berkes · Frank Wood · Jonathan W Pillow