Timezone: »
Maximum entropy analysis of binary variables provides an elegant way for studying the role of pairwise correlations in neural populations. Unfortunately, these approaches suffer from their poor scalability to high dimensions. In sensory coding, however, high-dimensional data is ubiquitous. Here, we introduce a new approach using a near-maximum entropy model, that makes this type of analysis feasible for very high-dimensional data---the model parameters can be derived in closed form and sampling is easy. We demonstrate its usefulness by studying a simple neural representation model of natural images. For the first time, we are able to directly compare predictions from a pairwise maximum entropy model not only in small groups of neurons, but also in larger populations of more than thousand units. Our results indicate that in such larger networks interactions exist that are not predicted by pairwise correlations, despite the fact that pairwise correlations explain the lower-dimensional marginal statistics extremely well up to the limit of dimensionality where estimation of the full joint distribution is feasible.
Author Information
Matthias Bethge (University of Tübingen)
Philipp Berens (MPI for Biological Cybernetics & University of Tübingen)
Related Events (a corresponding poster, oral, or spotlight)
-
2007 Poster: Near-Maximum Entropy Models for Binary Neural Representations of Natural Images »
Wed. Dec 5th 06:30 -- 06:40 PM Room
More from the Same Authors
-
2023 Poster: RDumb: A simple approach that questions our progress in continual test-time adaptation »
Ori Press · Steffen Schneider · Matthias Kümmerer · Matthias Bethge -
2023 Poster: Modulated Neural ODEs »
Ilze Amanda Auzina · Çağatay Yıldız · Sara Magliacane · Matthias Bethge · Efstratios Gavves -
2023 Poster: Compositional Generalization from First Principles »
Thaddäus Wiedemer · Prasanna Mayilvahanan · Matthias Bethge · Wieland Brendel -
2018 : Adversarial Vision Challenge: Results of the Adversarial Vision Challenge »
Wieland Brendel · Jonas Rauber · Marcel Salathé · Alexey Kurakin · Nicolas Papernot · Sharada Mohanty · Matthias Bethge -
2017 : DeepArt competition »
Alexander Ecker · Leon A Gatys · Matthias Bethge -
2017 Poster: Neural system identification for large populations separating “what” and “where” »
David Klindt · Alexander Ecker · Thomas Euler · Matthias Bethge -
2016 : Matthias Bethge - Texture perception in humans and machines »
Matthias Bethge -
2015 Poster: Texture Synthesis Using Convolutional Neural Networks »
Leon A Gatys · Alexander Ecker · Matthias Bethge -
2015 Poster: Generative Image Modeling Using Spatial LSTMs »
Lucas Theis · Matthias Bethge -
2012 Poster: Training sparse natural image models with a fast Gibbs sampler of an extended state space »
Lucas Theis · Jascha Sohl-Dickstein · Matthias Bethge -
2010 Poster: Evaluating neuronal codes for inference using Fisher information »
Ralf Haefner · Matthias Bethge -
2009 Poster: Hierarchical Modeling of Local Image Features through $L_p$-Nested Symmetric Distributions »
Fabian H Sinz · Eero Simoncelli · Matthias Bethge -
2009 Poster: Neurometric function analysis of population codes »
Philipp Berens · Sebastian Gerwinn · Alexander S Ecker · Matthias Bethge -
2009 Poster: A joint maximum-entropy model for binary neural population patterns and continuous signals »
Sebastian Gerwinn · Philipp Berens · Matthias Bethge -
2009 Spotlight: A joint maximum-entropy model for binary neural population patterns and continuous signals »
Sebastian Gerwinn · Philipp Berens · Matthias Bethge -
2009 Poster: Bayesian estimation of orientation preference maps »
Jakob H Macke · Sebastian Gerwinn · Leonard White · Matthias Kaschube · Matthias Bethge -
2008 Poster: The Conjoint Effect of Divisive Normalization and Orientation Selectivity on Redundancy Reduction »
Fabian H Sinz · Matthias Bethge -
2008 Spotlight: The Conjoint Effect of Divisive Normalization and Orientation Selectivity on Redundancy Reduction »
Fabian H Sinz · Matthias Bethge -
2007 Oral: Bayesian Inference for Spiking Neuron Models with a Sparsity Prior »
Sebastian Gerwinn · Jakob H Macke · Matthias Seeger · Matthias Bethge -
2007 Poster: Bayesian Inference for Spiking Neuron Models with a Sparsity Prior »
Sebastian Gerwinn · Jakob H Macke · Matthias Seeger · Matthias Bethge -
2007 Poster: Receptive Fields without Spike-Triggering »
Jakob H Macke · Günther Zeck · Matthias Bethge