Timezone: »
Reward-modulated spike-timing-dependent plasticity (STDP) has recently emerged as a candidate for a learning rule that could explain how local learning rules at single synapses support adaptive changes in complex networks of spiking neurons. However the potential and limitations of this learning rule could so far only been tested through computer simulations. This article provides tools for an analytic treatment of reward-modulated STDP, which allow us to derive concrete conditions under which the convergence of reward-modulated STDP can be predicted. In particular, we can produce in this way a theoretical explanation and a computer model for a fundamental experimental finding on reinforcement learning in monkeys by Fetz and Baker. We also report results of computer simulations that have tested further predictions of this theory.
Author Information
Robert Legenstein (Graz University of Technology)
Dejan Pecevski (Graz University of Technology)
Wolfgang Maass (Graz University of Technology - IGI)
Related Events (a corresponding poster, oral, or spotlight)
-
2007 Poster: Theoretical Analysis of Learning with Reward-Modulated Spike-Timing-Dependent Plasticity »
Wed. Dec 5th 06:30 -- 06:40 PM Room
More from the Same Authors
-
2020 Poster: H-Mem: Harnessing synaptic plasticity with Hebbian Memory Networks »
Thomas Limbacher · Robert Legenstein -
2020 Spotlight: H-Mem: Harnessing synaptic plasticity with Hebbian Memory Networks »
Thomas Limbacher · Robert Legenstein -
2019 : Poster Session »
Pravish Sainath · Mohamed Akrout · Charles Delahunt · Nathan Kutz · Guangyu Robert Yang · Joseph Marino · L F Abbott · Nicolas Vecoven · Damien Ernst · andrew warrington · Michael Kagan · Kyunghyun Cho · Kameron Harris · Leopold Grinberg · John J. Hopfield · Dmitry Krotov · Taliah Muhammad · Erick Cobos · Edgar Walker · Jacob Reimer · Andreas Tolias · Alexander Ecker · Janaki Sheth · Yu Zhang · Maciej Wołczyk · Jacek Tabor · Szymon Maszke · Roman Pogodin · Dane Corneil · Wulfram Gerstner · Baihan Lin · Guillermo Cecchi · Jenna M Reinen · Irina Rish · Guillaume Bellec · Darjan Salaj · Anand Subramoney · Wolfgang Maass · Yueqi Wang · Ari Pakman · Jin Hyung Lee · Liam Paninski · Bryan Tripp · Colin Graber · Alex Schwing · Luke Prince · Gabriel Ocker · Michael Buice · Benjamin Lansdell · Konrad Kording · Jack Lindsey · Terrence Sejnowski · Matthew Farrell · Eric Shea-Brown · Nicolas Farrugia · Victor Nepveu · Jiwoong Im · Kristin Branson · Brian Hu · Ramakrishnan Iyer · Stefan Mihalas · Sneha Aenugu · Hananel Hazan · Sihui Dai · Tan Nguyen · Doris Tsao · Richard Baraniuk · Anima Anandkumar · Hidenori Tanaka · Aran Nayebi · Stephen Baccus · Surya Ganguli · Dean Pospisil · Eilif Muller · Jeffrey S Cheng · Gaël Varoquaux · Kamalaker Dadi · Dimitrios C Gklezakos · Rajesh PN Rao · Anand Louis · Christos Papadimitriou · Santosh Vempala · Naganand Yadati · Daniel Zdeblick · Daniela M Witten · Nicholas Roberts · Vinay Prabhu · Pierre Bellec · Poornima Ramesh · Jakob H Macke · Santiago Cadena · Guillaume Bellec · Franz Scherr · Owen Marschall · Robert Kim · Hannes Rapp · Marcio Fonseca · Oliver Armitage · Jiwoong Im · Thomas Hardcastle · Abhishek Sharma · Wyeth Bair · Adrian Valente · Shane Shang · Merav Stern · Rutuja Patil · Peter Wang · Sruthi Gorantla · Peter Stratton · Tristan Edwards · Jialin Lu · Martin Ester · Yurii Vlasov · Siavash Golkar -
2019 : Contributed Talk #2: Slow processes of neurons enable a biologically plausible approximation to policy gradient »
Wolfgang Maass -
2019 : Coffee Break & Poster Session »
Samia Mohinta · Andrea Agostinelli · Alexandra Moringen · Jee Hang Lee · Yat Long Lo · Wolfgang Maass · Blue Sheffer · Colin Bredenberg · Benjamin Eysenbach · Liyu Xia · Efstratios Markou · Jan Lichtenberg · Pierre Richemond · Tony Zhang · JB Lanier · Baihan Lin · William Fedus · Glen Berseth · Marta Sarrico · Matthew Crosby · Stephen McAleer · Sina Ghiassian · Franz Scherr · Guillaume Bellec · Darjan Salaj · Arinbjörn Kolbeinsson · Matthew Rosenberg · Jaehoon Shin · Sang Wan Lee · Guillermo Cecchi · Irina Rish · Elias Hajek -
2018 Poster: Smoothed Analysis of Discrete Tensor Decomposition and Assemblies of Neurons »
Nima Anari · Constantinos Daskalakis · Wolfgang Maass · Christos Papadimitriou · Amin Saberi · Santosh Vempala -
2018 Poster: Long short-term memory and Learning-to-learn in networks of spiking neurons »
Guillaume Bellec · Darjan Salaj · Anand Subramoney · Robert Legenstein · Wolfgang Maass -
2016 : Reward-based self-configuration of networks of spiking neurons »
Wolfgang Maass -
2016 : Robert Legenstein (Graz University of Technology) »
Robert Legenstein -
2015 Poster: Synaptic Sampling: A Bayesian Approach to Neural Network Plasticity and Rewiring »
David Kappel · Stefan Habenschuss · Robert Legenstein · Wolfgang Maass -
2009 Poster: Functional network reorganization in motor cortex can be explained by reward-modulated Hebbian learning »
Robert Legenstein · Steven Chase · Andrew B Schwartz · Wolfgang Maass -
2009 Oral: Functional Network Reorganization In Motor Cortex Can Be Explained by Reward-Modulated Hebbian Learning »
Robert Legenstein · Steven Chase · Andrew B Schwartz · Wolfgang Maass -
2009 Poster: STDP enables spiking neurons to detect hidden causes of their inputs »
Bernhard Nessler · Michael Pfeiffer · Wolfgang Maass -
2009 Spotlight: STDP enables spiking neurons to detect hidden causes of their inputs »
Bernhard Nessler · Michael Pfeiffer · Wolfgang Maass -
2009 Poster: Replacing supervised classification learning by Slow Feature Analysis in spiking neural networks »
Stefan Klampfl · Wolfgang Maass -
2009 Spotlight: Replacing supervised classification learning by Slow Feature Analysis in spiking neural networks »
Stefan Klampfl · Wolfgang Maass -
2008 Poster: On Computational Power and the Order-Chaos Phase Transition in Reservoir Computing »
Benjamin Schrauwen · Lars Buesing · Robert Legenstein -
2008 Oral: On Computational Power and the Order-Chaos Phase Transition in Reservoir Computing »
Benjamin Schrauwen · Lars Buesing · Robert Legenstein -
2008 Poster: Hebbian Learning of Bayes Optimal Decisions »
Bernhard Nessler · Michael Pfeiffer · Wolfgang Maass -
2007 Poster: Simplified Rules and Theoretical Analysis for Information Bottleneck Optimization and PCA with Spiking Neurons »
Lars Buesing · Wolfgang Maass -
2006 Workshop: Echo State Networks and Liquid State Machines »
Herbert Jaeger · Wolfgang Maass · Jose C Principe -
2006 Poster: Temporal dynamics of information content carried by neurons in the primary visual cortex »
Danko Nikolic · Stefan Haeusler · Wolf Singer · Wolfgang Maass -
2006 Poster: Information Bottleneck Optimization and Independent Component Extraction with Spiking Neurons »
Stefan Klampfl · Robert Legenstein · Wolfgang Maass