Timezone: »
In this paper we investigate multi-task learning in the context of Gaussian Processes (GP). We propose a model that learns a shared covariance function on input-dependent features and a ``free-form'' covariance matrix over tasks. This allows for good flexibility when modelling inter-task dependencies while avoiding the need for large amounts of data for training. We show that under the assumption of noise-free observations and block design, predictions for a given task only depend on its target values and therefore a cancellation of inter-task transfer occurs. We evaluate the benefits of our model on two practical applications: a compiler performance prediction problem and an exam score prediction task. Additionally, we make use of GP approximations and properties of our model in order to provide scalability to large data sets.
Author Information
Edwin Bonilla (CSIRO's Data61)
Kian Ming A Chai (University of Edinburgh)
Chris Williams (University of Edinburgh)
Related Events (a corresponding poster, oral, or spotlight)
-
2007 Poster: Multi-task Gaussian Process Prediction »
Wed. Dec 5th 06:30 -- 06:40 PM Room
More from the Same Authors
-
2021 : Invited talk #4: Chris Williams »
Chris Williams -
2021 Poster: On Memorization in Probabilistic Deep Generative Models »
Gerrit van den Burg · Chris Williams -
2019 : Outstanding Contribution Talk: Variational Graph Convolutional Networks »
Edwin Bonilla -
2019 Poster: Structured Variational Inference in Continuous Cox Process Models »
Virginia Aglietti · Edwin Bonilla · Theodoros Damoulas · Sally Cripps -
2016 Workshop: Towards an Artificial Intelligence for Data Science »
Charles Sutton · James Geddes · Zoubin Ghahramani · Padhraic Smyth · Chris Williams -
2015 Poster: Scalable Inference for Gaussian Process Models with Black-Box Likelihoods »
Amir Dezfouli · Edwin Bonilla -
2014 Poster: Extended and Unscented Gaussian Processes »
Daniel M Steinberg · Edwin Bonilla -
2014 Spotlight: Extended and Unscented Gaussian Processes »
Daniel M Steinberg · Edwin Bonilla -
2014 Poster: Automated Variational Inference for Gaussian Process Models »
Trung V Nguyen · Edwin Bonilla -
2013 Workshop: Machine Learning for Sustainability »
Edwin Bonilla · Thomas Dietterich · Theodoros Damoulas · Andreas Krause · Daniel Sheldon · Iadine Chades · J. Zico Kolter · Bistra Dilkina · Carla Gomes · Hugo P Simao -
2012 Poster: A Generative Model for Parts-based Object Segmentation »
S. M. Ali Eslami · Chris Williams -
2011 Poster: Improving Topic Coherence with Regularized Topic Models »
David Newman · Edwin Bonilla · Wray Buntine -
2010 Poster: Gaussian Process Preference Elicitation »
Edwin Bonilla · Shengbo Guo · Scott Sanner -
2009 Poster: Generalization Errors and Learning Curves for Regression with Multi-task Gaussian Processes »
Kian Ming A Chai -
2008 Poster: Multi-task Gaussian Process Learning of Robot Inverse Dynamics »
Kian Ming A Chai · Chris Williams · Stefan Klanke · Sethu Vijayakumar -
2008 Spotlight: Multi-task Gaussian Process Learning of Robot Inverse Dynamics »
Kian Ming A Chai · Chris Williams · Stefan Klanke · Sethu Vijayakumar -
2007 Session: Spotlights »
Chris Williams -
2007 Session: Spotlights »
Chris Williams