Timezone: »
We cast the ranking problem as (1) multiple classification (``Mc'') (2) multiple ordinal classification, which lead to computationally tractable learning algorithms for relevance ranking in Web search. We consider the DCG criterion (discounted cumulative gain), a standard quality measure in information retrieval. Our approach is motivated by the fact that perfect classifications result in perfect DCG scores and the DCG errors are bounded by classification errors. We propose using the {\em Expected Relevance} to convert class probabilities into ranking scores. The class probabilities are learned using a gradient boosting tree algorithm. Evaluations on large-scale datasets show that our approach can improve {\em LambdaRank}\cite{Proc:BurgesNIPS06} and the regressions-based ranker\cite{Proc:ZhangCOLT06}, in terms of the (normalized) DCG scores. An efficient implementation of the boosting tree algorithm is also presented.
Author Information
Ping Li (Baidu Research USA)
Chris J Burges (Microsoft Research)
Qiang Wu (Department of Computer Science and Engineering)
Related Events (a corresponding poster, oral, or spotlight)
-
2007 Poster: McRank: Learning to Rank Using Multiple Classification and Gradient Boosting »
Tue. Dec 4th 06:30 -- 06:40 PM Room
More from the Same Authors
-
2017 Poster: Partial Hard Thresholding: Towards A Principled Analysis of Support Recovery »
Jie Shen · Ping Li -
2017 Poster: Simple strategies for recovering inner products from coarsely quantized random projections »
Ping Li · Martin Slawski -
2016 Poster: Exact Recovery of Hard Thresholding Pursuit »
Xiaotong Yuan · Ping Li · Tong Zhang -
2016 Poster: Learning Additive Exponential Family Graphical Models via $\ell_{2,1}$-norm Regularized M-Estimation »
Xiaotong Yuan · Ping Li · Tong Zhang · Qingshan Liu · Guangcan Liu -
2016 Poster: Quantized Random Projections and Non-Linear Estimation of Cosine Similarity »
Ping Li · Michael Mitzenmacher · Martin Slawski -
2015 Poster: b-bit Marginal Regression »
Martin Slawski · Ping Li -
2015 Spotlight: b-bit Marginal Regression »
Martin Slawski · Ping Li -
2015 Poster: Regularization-Free Estimation in Trace Regression with Symmetric Positive Semidefinite Matrices »
Martin Slawski · Ping Li · Matthias Hein -
2014 Workshop: Learning Semantics »
Cedric Archambeau · Antoine Bordes · Leon Bottou · Chris J Burges · David Grangier -
2014 Poster: Asymmetric LSH (ALSH) for Sublinear Time Maximum Inner Product Search (MIPS) »
Anshumali Shrivastava · Ping Li -
2014 Poster: Recovery of Coherent Data via Low-Rank Dictionary Pursuit »
Guangcan Liu · Ping Li -
2014 Poster: Online Optimization for Max-Norm Regularization »
Jie Shen · Huan Xu · Ping Li -
2014 Spotlight: Recovery of Coherent Data via Low-Rank Dictionary Pursuit »
Guangcan Liu · Ping Li -
2014 Oral: Asymmetric LSH (ALSH) for Sublinear Time Maximum Inner Product Search (MIPS) »
Anshumali Shrivastava · Ping Li -
2013 Poster: Beyond Pairwise: Provably Fast Algorithms for Approximate $k$-Way Similarity Search »
Anshumali Shrivastava · Ping Li -
2013 Poster: Sign Cauchy Projections and Chi-Square Kernel »
Ping Li · Gennady Samorodnitsk · John Hopcroft -
2013 Session: Oral Session 7 »
Chris J Burges -
2012 Poster: Entropy Estimations Using Correlated Symmetric Stable Random Projections »
Ping Li · Cun-Hui Zhang -
2012 Poster: One Permutation Hashing »
Ping Li · Art B Owen · Cun-Hui Zhang -
2011 Poster: Hashing Algorithms for Large-Scale Learning »
Ping Li · Anshumali Shrivastava · Joshua L Moore · Arnd C König -
2010 Spotlight: b-Bit Minwise Hashing for Estimating Three-Way Similarities »
Ping Li · Arnd C König · Wenhao Gui -
2010 Poster: b-Bit Minwise Hashing for Estimating Three-Way Similarities »
Ping Li · Arnd C König · Wenhao Gui -
2009 Workshop: Advances in Ranking »
Shivani Agarwal · Chris J Burges · Yacov Crammer -
2008 Poster: Localized Sliced Inverse Regression »
Qiang Wu · Sayan Mukherjee · Feng Liang -
2008 Spotlight: Localized Sliced Inverse Regression »
Qiang Wu · Sayan Mukherjee · Feng Liang -
2008 Poster: One sketch for all: Theory and Application of Conditional Random Sampling »
Ping Li · Kenneth W Church · Trevor Hastie -
2008 Spotlight: One sketch for all: Theory and Application of Conditional Random Sampling »
Ping Li · Kenneth W Church · Trevor Hastie -
2007 Poster: A Unified Near-Optimal Estimator For Dimension Reduction in $l_\alpha$ ($0<\alpha\leq 2$) Using Sta »
Ping Li · Trevor Hastie -
2006 Poster: Learning to Rank with Nonsmooth Cost Functions »
Chris J Burges · Quoc Le · Robert J Ragno -
2006 Poster: Conditional Random Sampling: A Sketch-based Sampling Technique for Sparse Data »
Ping Li · Kenneth W Church · Trevor Hastie